
Exceptional Service in the National Interest

CUBIT Mesh Generation
Environment

Volume 1: Users Manual

CUBIT Development Team1

Sandia National Laboratories
Albuquerque, New Mexico 87185-0441

Abstract

The CUBIT mesh generation toolkit is a two- and three-dimensional finite ele-
ment mesh generation tool which is being developed to pursue the goal of ro-
bust and unattended mesh generation—effectively automating the generation
of quadrilateral and hexahedral elements. CUBIT generates surface and vol-
ume meshes for solid model-based geometries; these meshes are used for finite
element analysis applications. A combination of techniques including paving,
mapping, submapping, sweeping, and various other algorithms being devel-
oped are available for discretizing the geometry into a finite element mesh. The
software is used for both production mesh generation and as a testbed for new
algorithms. While CUBIT is specifically designed to reduce the time required
to create all-quadrilateral and all-hexahedral meshes, it also provides the capa-
bility to generate hex dominant and tetrahedral meshes. This manual is de-
signed to serve as a reference and guide to creating finite element models in the
CUBIT environment.

This manual documents CUBIT Version 4.0.

1. See the next page for the members of the CUBIT Development Team.

SAND94-1100
Unlimited Release

Printed April 18, 2000 11:57 am

Distribution
Category UC-705

▼ Cubit Development Team Membership

Sandia National Laboratories, Albuquerque New Mexico

Robert A. Kerr Parallel Computing Sciences

Patrick Knupp Parallel Computing Sciences

Robert W. Leland Manager, Parallel Computing Sciences

Darryl J. Melander Parallel Computing Sciences

Scott A. Mitchell Parallel Computing Sciences

Steven J. Owen Parallel Computing Sciences

Jason F. Shepherd Parallel Computing Sciences

Timothy J. Tautges Parallel Computing Sciences

David R. White Parallel Computing Sciences

Brigham Young University, Provo, Utah

Steve Benzley Professor of Civil and Environmental Engineering

Michael J. Borden Student in Department of Civil and Environmental Eng.

Steven R. Jankovich Student in Department of Mechanical Engineering

University of Wisconsin

Jason Kraftcheck Student in Department of Mechanical Engineering

Yong Lu Student in Department of Mechanical Engineering

Contractors

Ray J. Meyers Contractor, Provo, Utah

MIchael Stephenson Contractor, Provo, Utah

Caterpillar Inc.

Steve Storm Corporate Information Services

Eric Nielsen Corporate Information Services

Rammagy Yoeu Corporate Information Services

Table of Contents

iv
v

xiii
xv

1

1
1

2
 2
 2
 3
 3
 3
 3
 3
 3
 4

4
 4
 5

 5
6
6

7

7
8

8
10
10

11
12
12
13
14
15

16
17
17
▼ Table of Contents
▼ Cubit Development Team Membership .
▼ Table of Contents .
▼ List of Figures .
▼ List of Tables .

Chapter 1: Getting Started .

▼ Introduction .
▼ How to Use This Manual .
▼ Features .

Geometry Creation, Modification and Healing .
Non-Manifold Topology. .
Geometry Decomposition .
Mesh Generation. .
Boundary Conditions .
Element Types .
Graphics Display Capabilities. .
Command Line Interface .
Hardware Platforms .

▼ Executing CUBIT .
Execution Command Syntax. .
User Environment Settings .
Initialization File. .

▼ CUBIT Mailing Lists .
▼ Problem Reports and Enhancement Requests .

Chapter 2: Tutorial .

▼ Introduction .
▼ Overview .
▼ Step 1: Beginning Execution .
▼ Step 2: Creating the Brick .
▼ Step 3: Creating the Cylinder .
▼ Step 4: Adjusting the Graphics Display .
▼ Step 5: Forming the Hole .
▼ Step 6: Setting Interval Sizes .
▼ Step 7: Surface Meshing .
▼ Step 8: Volume Meshing .
▼ Step 9: Inspecting the Model .
▼ Step 10: Defining Boundary Conditions .
▼ Step 11: Exporting the Mesh .
▼ Congratulations .
Document Version 4/18/00 CUBIT Reference Manual v

Table of Contents

19

19
19

21
 21
 22

 22
23

23
 23
 24
25

25
28

29
 29
 29

 31

 32

 35

 38
 38
 39

 41
 41

 44
 45
 45
49
 50

50
 50
 51
 51
 52

 52
58

59
Chapter 3: Environment .

▼ Introduction .
▼ Command Syntax .
▼ Executing CUBIT .

Execution Command Syntax. .
Environment Variables .
Initialization File. .

▼ Session Control .
▼ Command Recording and Playback .

Journal File Creation & Playback. .
Automatic Journal File Creation. .

▼ Restart .
▼ Entity Specification .
▼ Command Line Editing .
▼ Graphics .

Updating the Display .
Graphics Modes .
Drawing and Highlighting Entities .

Drawing Other Objects 31
Mouse-Based View Navigation .

Changing the View Transformation Button Bindings 33
Navigational Drawing Mode 33
Saving and Restoring Views 34

Selecting Entities with the Mouse. .
Information About the Selection 36

Mesh Slicing .
Entity Labels .
Colors .
Geometry and Mesh Entity Visibility .
Graphics Camera. .
Graphics Windows .
Hardcopy Output. .
Miscellaneous Graphics Options .

▼ Graphics Enhancements .
Entity Parsing .

▼ Listing Information .
List Model Summary .
List Geometry .
List Mesh .
List Special Entities .
List CUBIT Environment .

▼ Obtaining Help .

Chapter 4: Geometry .
vi CUBIT Reference Manual Document Version 4/18/00

Table of Contents

59
60

 60
 60
60
62
 63
 65
 66
69
71

73
 73
 75

75
79
80
 80
 81
 81

 81
82

82
 82
 83

85
85

98
100

115

115
 115
 116

117
 117

 117
 118
 119
 120
 120
121

 121
 123
▼ Introduction .
▼ CUBIT Geometry Model Definitions .

Topology. .
Non-Manifold Topology. .

▼ Automatic Detail Suppression .
▼ Geometry Creation .

Geometric Primitives .
Importing Geometry .
Bottom-Up Geometry Creation. .

▼ Geometry Transforms .
▼ Geometry Booleans .
▼ Geometry Decomposition .

Web Cutting .
Split Periodic. .

▼ Virtual Geometry: .
▼ Automatic Geometry Decomposition .
▼ Geometry Merging .

Merging. .
Examining Merged Entities .
Merge Tolerance .
Using Geometry Merging to Verify Geometry. .

▼ Geometry Groups .
▼ Geometry Attributes .

Entity Names. .
Persistent Attributes .

▼ Exporting Geometry .
▼ New Geometry Commands .
▼ Model Import/Export .
▼ Groups .

Chapter 5: Mesh Generation .

▼ Introduction .
Element Types .
Mesh Generation Process .

▼ Interval Assignment .
Interval Firmness .
Explicit Specification of Intervals .
Automatic Specification of Intervals .
Interval Matching .
Periodic Intervals .
Relative Intervals .

▼ Meshing Schemes .
Bias, Dualbias .
Circle. .
Document Version 4/18/00 CUBIT Reference Manual vii

Table of Contents

 124
 125
 125
 128

 128
 129
 129
 130
 132
 133
 136
 137
 138
 139
 140
 141
 143

 146
 147
 148
 149
 151
 152
 153

 153
 155
 156
157
 157
 158
 158
159
 159
 160
 160
 161
161
 163
 163
 164
 164

 164
 165
 165
 166

 166
Copy .
Curvature. .
Dice. .
Equal .
HexToVoid .
HexTet. .
Hole. .
Mapping .
Mirror .
Pave. .
Pentagon Primitive .
Plastering. .
QTri. .
Sphere .
Stretch .
Submap .
Sweep .
TetMesh, TetINRIA, TetMSC .
Tetrahedron. .
THex .
Transition .
Triangle .
Trimap. .
. .
TriMesh, TriAdvance, TriMSC .
Tripave .
Whisker Weaving .

▼ Automatic Scheme Selection .
Notes: Surface Auto Scheme Selection .
Notes: Volume Auto Scheme Selection .
General Notes .

▼ Mesh-Related Topics .
Grouping Sweepable Volumes .
FullHex versus NodeHex Representation. .
Surface Vertex Types .
Preview Mesh .

▼ Mesh Smoothing .
Smooth Scheme: Centroid Area Pull .
Smooth Scheme: Equipotential. .
Smooth Scheme: Laplacian. .
Smooth Scheme: Optimize Area. .
Smooth Scheme: Optimize Condition Number .
Smooth Scheme: Optimize Jacobian .
Smooth Scheme: Optimize Untangle .
Smooth Scheme: Randomize .
Smooth Scheme: Winslow .
viii CUBIT Reference Manual Document Version 4/18/00

Table of Contents

166
167

67
 168
 169
169
 169
 170
 172
 173
 174
 175
 176

 177
178

179
79
 179
 180
 180
 180

181
181

 182
183
83
84

185

187

187
187

88
190
190

193
196
200
 200
▼ Mesh Deletion .
▼ Node and NodeSet Repositioning .
▼ Mesh Importing and Duplicating . 1

Importing mesh from an external file .
Duplicating mesh .

▼ Mesh Quality Assessment .
Metrics for Triangular Elements. .
Metrics for Quadrilaterals .
Metrics for Tetrahedral Elements .
Metrics for Hexahedral Elements .
Details on Robinson Metrics for Quadrilaterals .
Command Syntax .
Example Output .
Controlling Mesh Quality .

▼ Mesh Validity .

Chapter 6: Finite Element Model Definition and Output 179

▼ Introduction .
▼ Finite Element Model Definition . 1

Element Blocks .
Nodesets .
Sidesets .
Element Types .

▼ Element Block Specification .
▼ Nodesets and Sidesets .

Nodeset Associativity Data. .
▼ ExodusII Model Title .
▼ Transforming Mesh Coordinates . 1
▼ Exporting the Finite Element Model . 1
▼ References .

Appendix A: Examples .

▼ Introduction .
▼ General Comments .
▼ Simple Internal Geometry Generation . 1
▼ Octant of Sphere .
▼ Box Beam .
▼ Thunderbird 3D Shell .
▼ Advanced Tutorial .
▼ ExodusII File Specification .

Element Block Definition Examples .
Surface Mesh Only 200
Document Version 4/18/00 CUBIT Reference Manual ix

Table of Contents

03

13

213
213
213

15

215

219
Two-Dimensional Mesh 201

Appendix B: Available Colors . 2

Appendix C: CUBIT Licensing, Distribution and Installation 207

Appendix D: Element Numbering . 2

▼ Introduction .
▼ Node Numbering .
▼ Side Numbering .

Appendix E: Adaptive Meshing . 2

▼ Introduction .

Appendix F: Index .
x CUBIT Reference Manual Document Version 4/18/00

Table of Contents
Document Version 4/18/00 CUBIT Reference Manual xi

Table of Contents
xii CUBIT Reference Manual Document Version 4/18/00

CHAPTER

8
9
9

10
11
11
12
13
14

15
15
16
17

top

n
when

42
63

able.

80
120
123

123
126
130
131
132
133
135
138
140

. 141
142

143
143

144
146
148
▼ List of Figures
Figure 2-1: Geometry for Cube with Cylindrical Hole...
Figure 2-2: Generated Mesh for Cube with Cylindrical Hole ..
Figure 2-3: CUBIT startup screen. ...
Figure 2-4: Display of brick..
Figure 2-5: Brick and cylinder..
Figure 2-6: View from different perspective. ...
Figure 2-7: Brick after subtracting cylinder. ..
Figure 2-8: Geometry with curve labeling turned on. ..
Figure 2-9: Surface meshed with paving. ...
Figure 2-10: Output from listing volume 3...
Figure 2-11: Wireframe view of volume mesh...
Figure 2-12: Hiddenline (left) and shaded (right) view of volume mesh.
Figure 2-13: Quality table from volume 3’s hex mesh...
Figure 3-1: Examples of three most common viewing modes in CUBIT; Wireframe (left);

Hiddenline (center); Smoothshade (right). ..30
Figure 3-2: Examples of other viewing modes in CUBIT; Flatshade (top left); Polygonfill(

right); Painters(bottom left); Truehiddenline (bottom right).30
Figure 3-3: A meshed cylinder shown with graphics facets off (left) and graphics facets o

(right); note how geometry facets on the curved surface obscure mesh edges
facets are off...31

Figure 3-4: Schematic of From, At, Up, and Perspective Angle
Figure 4-1: Geometry primitives available in CUBIT..
Figure 4-2: Automatic decomposition, plus one manual webcut, makes the model sweep

79
Figure 4-3: Merging two manifold surfaces into a single non-manifold surface.
Figure 5-1: Useful relative lengths. ..
Figure 5-2: Equal and biased curve meshing..
Figure 5-3: Circle Primitive Mesh..
Figure 5-4: Simple Dicing Example ...
Figure 5-5: Example of Mesh Scheme Hole...
Figure 5-6: Scheme Map Logical Properties ..
Figure 5-7: Volume mapping of a 5-surfaced volume..
Figure 5-8: Surface 1 copied/mirrored onto surface 2..
Figure 5-9: Map (left) and Paved (right) Surface Meshes..
Figure 5-10: Plastering Examples...
Figure 5-11: Example of Mesh Scheme Sphere ...
Figure 5-12: Quadrilateral and hexahedral meshes generated by submapping
Figure 5-13: Scheme Submap Logical Properties ..
Figure 5-14: Periodic Surface Meshing with Submapping...
Figure 5-15: Sweep Volume Meshing..
Figure 5-16: Multiple Surface Sweep Volume Meshing..
Figure 5-17: Multiswept volume mesh...
Figure 5-18: Tetrahedral mesh generated with scheme TetMesh.......................................
Document Version 4/18/00 CUBIT Version 3.0 Reference Manualxiii

CHAPTER

g

150
151
151
152
155
156

del is

ed in

ed are

175
177
189

194
197
199

213
214
Figure 5-20: Conversion of a tetrahedron to four hexahedra, as performed by the THex
algorithm. ...149

Figure 5-19: Sphere octant hex meshed with scheme Tetrahedron, surfaces meshed usin
scheme Triangle ...149

Figure 5-21: A cylinder before and after the THex algorithm is applied.
Figure 5-22: Scheme Transition Triangle and Half_circle ...
Figure 5-23: Scheme Transition Three_to_one and Two_to_one
Figure 5-24: Scheme Transition Convex_corner and Four_to_two
Figure 5-25: Meshes generated with scheme QTRI (top) and TriAdvamce (bottom)........
Figure 5-26: Some simple Whisker Weaving meshes with good quality...........................
Figure 5-27: Non-trivial model meshed using automatic scheme selection (part of the mo

not shown in order to reveal the internal structure of the model)............159
Figure 5-28: Angle Types for Mapped and Submapped Surfaces: An End vertex is contain

one element, a Side vertex two, a Corner three, and a Reversal four.160
Figure 5-29: Influence of vertex types on submap meshes; vertices whose types are chang

indicated above, along with the mesh produced; logical submap shape shown
below..162

Figure 5-30: Illustration of Quadrilateral Shape Parameters (Quality Metrics)
Figure 5-31: Illustration of Quality Metric Graphical Output ..
Figure A-1: Geometry for Cube with Cylindrical Hole...
Figure A-5: Sandia Thunderbird 3D shell ...
Figure A-6: Geometry of Advanced Tutorial ..
Figure A-7: Mesh of Advanced Tutorial Problem...
Figure D-1: Local Node Numbering for CUBIT Element Types......................................
Figure D-2: Local Side Numbering for CUBIT Element Types
xiv CUBIT Version 3.0 Reference Manual Document Version 4/18/00

urfac-
27

7
28
32
35
38

53
54

54
54

55
55
56
56
57
57
57
57
58
58
58

68
mat-
4
. 116

118
131
169
171
172
173
176
177
180
183

188
203
▼ List of Tables
Table 3-1: Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1; S

es 1 and 2 are bounded by Curves 2-5.
Table 3-2: Precedence of “Except” and “In” keywords; Group 1 consists of

Surfaces 1-2 and Curve 1. 2
Table 3-3: Command Line Interface Line Editing Keys...
Table 3-4: Default Mouse Function Mappings ...
Table 3-5: Picking and key press operations on the picked entities................................
Table 3-6: Mesh slicing key press operations. ..
Table 3-7: Journal file for List Examples...
Table 3-8: ‘List Model’ or ‘List Totals’ Example..
Table 3-9: ‘List Names’ Example ...
Table 3-10: ‘List Surface [range] Ids’ Examples ..
Table 3-11: Using ‘List’ for Querying Connectivity...
Table 3-12: ‘List Group Mesh Detail’ Example..
Table 3-13: ‘List Surface Geometry’ Example ...
Table 3-14: ‘List Curve’ Example...
Table 3-15: ‘List <entities> x’ Example. ..
Table 3-16: ‘List Hex’ Examples ..
Table 3-17: ‘List Block’ Example..
Table 3-18: ‘List SideSet’ Example ..
Table 3-19: ‘List NodeSet’ Example...
Table 3-20: Sample Output from ‘List Settings’ Command ...
Table 3-21: Help on Volume & Label...
Table 4-1: Surface Extension Results..
Table 4-2: Attribute types currently implemented in CUBIT. All attributes are set to auto

ically read and write from and to ACIS model. 8
Table 5-1: Basic element designators and elements corresponding to geometry entities
Table 5-2: Relative size factors. ..
Table 5-3: Listing of logical sides...
Table 5-4: Description of Triangular Quality Measures ...
Table 5-5: Description of Quadrilateral Quality Measures ...
Table 5-6: Description of Tetrahedral Quality Measures..
Table 5-7: Description of Hexahedral Quality Measures..
Table 5-8: Typical Summary for a Quality Command..
Table 5-9: Legend for Quality Surface 1 Skew Draw Mesh...
Table 6-1: Element types defined in CUBIT...
Table 6-2: Nodeset id base numbers for geometric entities ..
Table A-1: CUBIT Features Exercised by Examples. ..
Table B-1: Available Colors ..
Document Version 4/18/00 CUBIT Version 3.0 Reference Manualxv

With
an be
ndary
alysis
gular,
s and

ing
l. As

es that
ted and
o be
their

etries
ts of
ese
work.

se the

It is
l is
. An
s of
Chapter 1: Getting Started
▼ Introduction…1

▼ How to Use This Manual…1

▼ Features…2

▼ Executing CUBIT…4

▼ CUBIT Mailing Lists…6

▼ Problem Reports and Enhancement Requests…6

▼ Introduction
Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit.
CUBIT the geometry of a part can be imported, created, and/or modified. The geometry c
discretized into a finite element mesh using a combination of meshing algorithms and bou
conditions can be applied to the mesh through the geometry and appropriate files for an
generated. CUBIT is designed to reduce the time required to create quadrilateral, trian
hexahedral, tetrahedral and mixed element meshes, with an emphasis on algorithm
techniques for generating large, unstructured, and high-quality hexahedral meshes.

The CUBIT environment is designed to provide the user with a powerful toolkit of mesh
algorithms that require varying degrees of input to produce a complete finite element mode
such, the code is constantly being updated and improved. Feedback from our users indicat
new meshing tools are often needed and/or desired before they have been completely tes
debugged; therefore, the released versin of CUBIT contains algorithms which are t
considered not quite ready for production use. These algorithms are identified in
documentation later in this manual.

Experience has shown that generating meshes for complex, solid model-based geom
requires a variety of tools, from completely automatic tools to tools requiring large amoun
user input. The overall goal of the CUBIT project is to reduce the time to mesh for th
problems, and this goal has been achieved by inegrating these tools in a common frame
The user is encouraged to become familiar with the available tools, so that he can choo
right tool for his particular job.

▼ How to Use This Manual
This manual provides specific information about the commands and features of CUBIT.
divided into chapters which roughly follow the process in which a finite element mode
designed, from geometry creation to mesh generation to boundary condition application
example is provided in a tutorial chapter to illustrate some of the capabilities and use
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 1

CHAPTER 1: Getting Started

tions,

stable
have
er, a
k-in-
ceed

and
he

ing
odel.

and
lean

an
nd
AD

uding
n the
lans
s.

ided
etric
ng is
ore
eam.

parts
ing
d into
gical
odel

nd can
s slide
CUBIT. Appendices containing complete command usage, examples, installation instruc
and a list of available colors are included.

Integrated in CUBIT are algorithms and tools which are in auser bewarestate. As they are
further tested (often with the assistance of users) and improved, the tool becomes more
and production-worthy. Since documentation of the tool is necessary for actual use, we
included the documentation of all available tools in the manual. However, to warn the us
“hammer” icon is placed in the document next to those features which are in a state of wor
progress (See “hammer” icon in left margin). When using these tools, the user should pro
with caution.

Certain portions of this manual contain information that is vital for understanding
effectively using CUBIT. These portions are hilighted with a “key” icon positioned in t
document next to these sections.

This manual documents CUBIT Version 4.0, April 2000.

▼ Features
The CUBIT environment is designed to provide the user with a powerful toolkit of mesh
algorithms that require varying degrees of input to produce a complete finite element m
The following sections provide a brief overview of the various features in CUBIT.

Geometry Creation, Modification and Healing
The CUBIT package relies on the ACIS solid modeling engine for geometry representation
querying. Geometry creation is accomplished using the geometric primitives and boo
operations in CUBIT or by reading model from a file in the ACIS SAT file format. SAT files c
be written directly from several commercial CAD systems, including SolidWorks a
AutoCAD. In addition, geometry models can be generated in and written from other C
systems and translated to the SAT format; translators are available for many formats, incl
Pro/Engineer, IGES and STEP. CUBIT can also directly import planar surface geometry i
FASTQ [5] file format, a legacy meshing tool written at Sandia. Finally, there are efforts or p
underway to port CUBIT directly to other CAD systems, including Pro/Engineer and Idea

The CUBIT project has purchased a limited number of licenses for geometric healing prov
by Spatial Technology. This technology allows the users to “heal” or clean invalid geom
entities and topology resulting from translation or model creation artifacts. Currently, heali
handled by sending “dirty” geometry to members of the CUBIT project for healing. For m
information about obtaining a license to do local healing, contact the CUBIT development t

Non-Manifold Topology
Typical assembly meshes produced using CUBIT require contiguous mesh across multiple
in an assembly. This “non-manifold topology” is accomplished in CUBIT by represent
shared topological surfaces in the geometric model. Geometric models are always importe
CUBIT as manifold models; then, surfaces which are pass a geometric and topolo
comparison are “merged” to form shared surfaces. A similar technique is used to merge m
edges and vertices across parts. These comparisons are performed automatically, a
optionally be restricted to subsets of the model (to allow representations of such features a
lines).
2 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 1: Getting Started

shing.
ility

ions.
dral
hedral
being

US
desets.
group

nt or
oundary

ditions
bined
ition

node
5 node
r after

where

splay
rame
ouse-
rivers
upport
rated.
nes.

I is
ands
d line
Geometry Decomposition
Solid models often require decomposition to make them amenable to hexahedral me
CUBIT contains a wide variety of tools for interactive geometry decomposition, and a capab
for performing automatic geometry decomposition is also under development.

Mesh Generation
CUBIT contains a variety of tools for generating meshes in one, two and three dimens
While the primary focus of CUBIT is on generating unstructured quadrilateral and hxahe
meshes, algorithms are also available for structured mesh generation and triangle/tetra
mesh generation. Several algorithms for generating mixed hex-tet meshes are also
developed.

Boundary Conditions
CUBIT uses the EXODUS-II format specification for exporting mesh data. EXOD
represents boundary conditions on meshes using Element Blocks, Nodesets, and Si
Element Blocks are used to group elements by material type. Nodesets can be used to
nodes for application of nodal boundary conditions, for example enforced displaceme
nodal temperature values. Sidesets are used to represent face-based and edge-based b
conditions like pressure or heat flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and the appropriate boundary con
can be specified in an analysis-independent manner. Typically this specification is com
with an additional data file which designates the specific type of boundary cond
(temperature, displacement, pressure, etc.), along with boundary condition values.

Element Types
Element types supported in CUBIT include 2 and 3 node bars and beams; 4, 8, and 9
quads; 3, 6, and 7 node triangles, 4, 8, and 9 node shells; 4, 8, 10, and 16 node tetrahedra,
pyramids, and 8, 20, and 27 node hex elements. Element types can be specified before o
mesh generation is performed. Higher order nodes are projected to the solid geometry
appropriate.

Graphics Display Capabilities
CUBIT uses the HOOPS package for its graphics and rendering engine. CUBIT can di
geometric and mesh entities in several modes, including hidden line, shaded or wiref
modes. CUBIT supports screen picking of geometric and mesh entities, as well as m
controlled operations on the model view like rotate, pan, and zoom. HOOPS contains d
which take advantage of hardware acceleration on most supported platforms, as well as s
for a standard X11 display. PostScript files of any displayed image can also be gene
CUBIT can also be run without graphics, to allow execution in batch mode or over dialup li

Command Line Interface
User interaction with CUBIT is performed through a command line interface; no GU
available at this time (though there are plans for providing a GUI in the near future). Comm
can be entered either interactively or in batch mode though a command file. The comman
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 3

CHAPTER 1: Getting Started

BIT’s

ett-
lso
rsion

to

on

ed

ill

s to

he
le
interface supports the APREPRO command preprocessor, which when combined with CU
scripting capability allows parameterization of CUBIT input.

Hardware Platforms
CUBIT is written in “standard” C++ and is currently supported on Sun Solaris 2.6, Hewl
Packard (HP-UX 10.20), and Silicon Graphics (IRIX 6.5) unix workstations. CUBIT has a
been ported to the Microsoft NT operating system; plans are underway to make this ve
available to Sandia CUBIT users.

▼ Executing CUBIT

Execution Command Syntax
The command syntax recognized by CUBIT is:

cubit [-help] [-initfile <val>] [-noinitfile] [-solidmodel <val>]
[-batch] [-nographics] [-nojournal] [-journalfile <file>] [-maxjournal <val>]
[-display <val>] [-noecho] [-debug=<val>] [-information={on|off}]
[-warning={on|off}] [-Include <path>] [-fastq <fastq_file>]
[<input_file_list>][<var=value>]...

where the quantities in square brackets[-options] are optional parameters that are used
modify the default behavior of CUBIT and the quantities in angle brackets<values> are values
supplied to the option. Optional arguments to CUBIT are summarized below.

-help Print a short usage summary of the command syntax to the terminal and exit.

-initfile <val> Use the file specified by<val> as the initialization file instead of the default
initialization file $HOME/.cubit .

-noinitfile Do not read any initialization file. The default behavior is to read the initializati
file $HOME/.cubit or the file specified by the-initfile option if it exists.

-solidmodel <val> Read the ACIS solid model geometry information from the file specifi
by <val> prior to prompting for interactive input.

-batch Specify that there will be no interactive input in this execution of CUBIT. CUBIT w
terminate after reading the initialization file, the geometry file, and the<input_file_list>.

-nographics Run CUBIT without graphics. This is generally used with the-batch option or
when running CUBIT over a line terminal.

-display Sets the location where the CUBIT graphics system will be displayed, analogou
the DISPLAY environment variable for the X Windows system.

-nojournal Do not create a journal file for this execution of CUBIT. This option performs t
same function as theJournal Off command. The default behavior is to create a new journal fi
for every execution of CUBIT.

-journalfile <file> Write the journal entries to<file> . The file will be overwritten if it already
exists.

-maxjournal <val> Only create a maximum of<val> default journal files. Default journal
files are of the formcubit.#.jou where # is a number in the range 01 to 99.
4 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 1: Getting Started

n as

e

le.

be
nd

file
iption

the
option
and

Q file

ues
otes.),

ich

in

by
t is
BIT

e is
o the
etric
-noecho Do not echo commands to the console. This option performs the same functio
theEcho Off command. The default behavior is to echo commands to the console.

-debug=<val> Set to “on” the debug message flags indicated by<val> , where<val> is a
comma-separated list of integers or ranges of integers, e.g. 1,3,8-10.

-information={on|off} Turn on/off the printing of information messages from CUBIT to th
console.

-warning={on|off} Turn on/off the printing of warning messages from CUBIT to the conso

-Include=<include_path> Set the patch to search for journal files and other input files to
<include_path>. This is useful if you are executing a journal file from another directory a
that journal file includes other files that exist in that directory also.

-fastq=<fastq_file> Read the mesh and geometry definition data in the FASTQ
<fastq_file> and interpret the data as FASTQ commands. See Reference [5] for a descr
of the FASTQ file format.

<input_file_list> Input files to be read and executed by CUBIT. Files are processed in
order listed, and afterwards interactive command input can be entered (unless the -batch
is used.)Read the mesh and geometry definition data in the FASTQ file <fastq_file>
interpret the data as FASTQ commands. See Reference [5] for a description of the FAST
format.

<variable=value> APREPRO variable-value pairs to be used in the CUBIT session. Val
can be either doubles or character type (character values must be surrounded by double qu

Command options can also be specified using theCUBIT_OPT environment variable (See
“User Environment Settings” on page 5.)

User Environment Settings
CUBIT can interpret the following environment variables.

DISPLAY: X-Window display to which the graphics window should be displayed (and wh
screen should be used on displays with multiple monitors).

CUBIT_OPT: Execution command line parameter options. Any valid options described
“Execution Command Syntax” on page 4.

CUBIT_LICENSE: Directory location of MSC Aries tetrahedral mesher license file;
default, this license file is set for the ENGSCI LAN compute server and on the JAL LAN i
located in /var/scrl1/.mscCAERoot on several personal machines. Contact the CU
development team for more information on obtaining a license for this mesher.

Initialization File
If the file$HOME/.cubit or the file specified by the optional-initfile <val> option exists when
CUBIT begins executing, it is read prior to beginning interactive command input. This fil
typically used to perform initialization commands that do not change from one execution t
next, such as turning off journal file output, specifying default mouse buttons, setting geom
and mesh entity colors, and setting the size of the graphics window.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 5

CHAPTER 1: Getting Started

other
other
send
ssage

IT
This
d for

o the

BIT
eview
stem,
in 48

s and
with

are
UBIT
▼ CUBIT Mailing Lists
A mailing list is used to keep interested users informed of new features, bug-fixes, and
pertinent information about CUBIT. The list can also be used for general discussions with
CUBIT users as well as CUBIT developers. To send questions or comments to this list,
email to cubit@sandia.gov. Users can subscribe to the mailing list by sending a mail me
to majordomo@jal.sandia.gov with a body consisting of

subscribe cubit

An additional mailing list has been created for direct communication with the CUB
developers. All messages sent to this list will be distributed to the CUBIT developers only.
list should be used for questions that are not of general interest to other CUBIT users an
reporting bugs in CUBIT. Messages are sent to the CUBIT developers by sending mail t
address:

cubit-dev@sandia.gov

▼ Problem Reports and Enhancement
Requests

All CUBIT bugs, problem reports and enhancement requests for CUBIT should be sent tocubit-
dev@sandia.gov. These requests will be addressed as quickly as possible. The CU
developement team will review the problem or enhancement request. Pending the r
process, an enhancement request or bug report will be added to CUBIT’s bug tracking sy
and will be resolved in a timely manner. In general users should expect responses with
hours.

Note: The existence and recommended use of an electronic mailing list to report bug
request enhancements is not intended to discourage face-to-face discussion
CUBIT developers, but rather to minimize response time for bug fixes. Users
encouraged to discuss bugs, enhancements or general meshing issues with the C
development team.
6 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

esh
pter is
forated

ry. By
as
l the
.

Chapter 2: Tutorial
▼ Introduction…7

▼ Overview…8

▼ Step 1: Beginning Execution…8

▼ Step 2: Creating the Brick…10

▼ Step 3: Creating the Cylinder…10

▼ Step 4: Adjusting the Graphics Display…11

▼ Step 5: Forming the Hole…12

▼ Step 6: Setting Interval Sizes…12

▼ Step 7: Surface Meshing…13

▼ Step 8: Volume Meshing…14

▼ Step 9: Inspecting the Model…15

▼ Step 10: Defining Boundary Conditions…16

▼ Step 11: Exporting the Mesh…17

▼ Congratulations…17

▼ Introduction
The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite element m
generation as well as provide a brief tutorial on the use of the software package. This cha
designed to demonstrate step-by-step instructions on generating a simple mesh on a per
block.

The following demonstrates the basics of using CUBIT to generate and mesh a geomet
following this tutorial, you will become familiar with the command-line interface and with
much of the CUBIT environment as possible without stopping for detailed explanations. Al
commands introduced in this tutorial are thoroughly documented in subsequent chapters

Here are a few tips in following the example in the tutorial:

• Focus on instructions preceded with “Step” numbers. These take you through a series of
explicit activities that describe exactly what to do to complete the task.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 7

CHAPTER 2: Tutorial

. The

2-
are

wn in

ns
r

• Refer to screen shots and other pictures that show you what you should see on your own
display as you progress through the tutorial.

• An example of the command line is shown below. In this tutorial, the command that you
should type will be proceeded by the word “Command” and a colon.

cubit> This is a Command Line

▼ Overview
This tutorial demonstrates the use CUBIT to create and mesh a brick with a through-hole
primary steps in performing this task are:

• Create geometry

• Set interval sizes and mesh schemes

• Mesh geometry

• Specify boundary conditions

• Export mesh

Each of these steps is described in detail in the following sections.

The geometry for this tutorial is a block with a cylindrical hole in the center, shown in Figure
1. This figure also shows the curve and surface identification (ID) numbers, which

referenced in the command lines shown with each step. The final meshed body is sho
Figure 2-2 and also at the end of this chapter.

▼ Step 1: Beginning Execution
Type “cubit” to begin execution of CUBIT. If you have not yet installed CUBIT, see instructio
for doing so in the “CUBIT Installation” Appendix. A CUBIT console window will appea

Figure 2-1: Geometry for Cube with Cylindrical Hole

15
17

18

19

28

20

27

16
21

22

26

23

24

25

Curve Labels

10

11

12

13

14

15

16

Surface Labels
8 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2: Tutorial

(See

tion

that
which tells the user which CUBIT version is being run and the most recent revision date.

Figure 2-2 for a picture of this window). This window echos commands and relays informa
about the success or failure of attempted actions.

Some things to notice are:

• At the bottom of the CUBIT window you will be told where the commands entered in this
CUBIT session will be journaled. For example: “Commands will be journaled to
‘cubit01.jou’.

• In addition to the CUBIT version, the code also reports the versions of ACIS and HOOPS
have been compiled into CUBIT (above, versions 1.5 and 2.x, respectively.)

Figure 2-2: Generated Mesh for Cube with Cylindrical Hole

Figure 2-3: CUBIT startup screen.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual 9

CHAPTER 2: Tutorial

nd

10,
object
sion
te this

along

,

is

, as
• The command line prompt appears after the banner screen, and appears as “CUBIT>”.

• Commands are entered at that prompt, followed by the “Enter” key.

• Upon startup, a graphics window should also appear, with an axis triad in the lower left ha
corner (this window will not appear if CUBIT is started with the -nograpics option.)

▼ Step 2: Creating the Brick
Now you may begin generating the geometry to be meshed. You will create a brick of width
depth 10 and height 10. The width and depth correspond to the x and y dimensions of the
being created. The “width” or x-dimension is screen-horizontal and the “depth” or y-dimen
is screen-vertical. The height or z-dimension is out of the screen. The command to crea
object is:

cubit> Create Brick Width 10. Depth 10. Height 10.

The cube should appear in your display window as shown in Figure 2-4.

• Note that the journaled version of the command is echoed above the next command line
with the confirmation message “brick body 1 successfully created.”

• The command line is not case-sensitive, soBrick andWidth do not need to be capitalized.

• The “Create” qualifier is optional in this command; also, if the arguments to the Depth and
Height qualifiers are identical to that of the Width qualifier, they can be omitted. Therefore
identical results could be achieved with the command “Brick Width 10.”

▼ Step 3: Creating the Cylinder
Now you must form the cylinder which will be used to cut the hole from the brick. This
accomplished with the command

cubit> create cylinder height 12 radius 3

At this point you will see both a cube and a cylinder appear in the CUBIT display window
shown in Figure 2-5.

Figure 2-4: Display of brick.
10 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2: Tutorial

wing
the
the

in
otate

the
le
cial
te,
e by

the
ng the
▼ Step 4: Adjusting the Graphics Display
The geometry is drawn in the graphics display in perspective mode, by default from a vie
direction of the +z axis. This view can now be adjusted to verify the proper orientation of
geometry just created. To do this activate your graphics window by placing your cursor in
window or by clicking at the top of it (this will vary depending upon your window settings
your operating system). To change your view, use the Left mouse button to interactively r
the view, the Middle mouse button to zoom in or out, and the Right mouse button to pan
view. On the GUI version of CUBIT the "control" key must be held down while right, midd
or left clicking for transformations. The GUI by default is set up to mouse like other commer
packages so the following button clicks apply: cntrl-right will zoom, cntrl-middle will rota
and cntrl-left will pan. Graphics changes may also be performed via the command lin
specifically setting the view locations (at the command prompt typehelp at or help from for
the correct syntax).

Use the mouse buttons to make the display look like Figure 2-6.

In the display, the wireframe picture shows the relative locations of the bodies. Viewing
image in shaded mode improves the perspective; this will be described in Step 9: Inspecti
Model.

Figure 2-5: Brick and cylinder.

Figure 2-6: View from different perspective.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual11

CHAPTER 2: Tutorial

the

with

n in

ide of
ments

whole
ified

ceive

r the
r can
bels
▼ Step 5: Forming the Hole
Now the cylinder can be subtracted from the brick to form the hole in the block. Issue
following command:

cubit> Subtract 2 From 1

Note: Note that both original bodies are deleted in the boolean operation and replaced
a new body (with an id of 3) which is the result of the boolean operationSubtract .

The result of this operation is a single body, a brick with a hole through it. This is show
Figure 2-7.

We have now completed creating the geometry, and are ready to generate a mesh.

▼ Step 6: Setting Interval Sizes
The volume shown in Figure 2-7 will be meshed by sweeping a surface mesh from one s
the block to the other.Before generating any mesh, the user must specify the size of the ele
to be generated. In this example, one element size will be specified for the volume as a
and a smaller size will be specified for around the hole. A direct interval setting will be spec
for the sweep direction.

To set the interval size for the overall body, enter the command

cubit> body 3 interval size 1.0

Since the brick is 10 units in length on a side, this specifies that each straight curve is to re
approximately 10 mesh elements.

In order to better resolve the hole in the middle of the top surface, we set a smaller size fo
curve bounding this hole. To find the id number of the curve bounding the hole, the use
either pick the curve (See “Selecting Entities with the Mouse” on page 35.) or turn curve la
on and regenerate the view. To do the latter, use the command

Figure 2-7: Brick after subtracting cylinder.
12 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2: Tutorial

rve:

is is

ing the
t the
cubit> label curve on

cubit> display

The result is shown in Figure 2-8. Then the interval size can be set for the appropriate cu

cubit> curve 15 interval size.5

Finally, we would like to generate exactly 3 element layers in the sweep direction. Th
accomplished by setting the intervals on curve 27:

cubit> curve 27 interval 3

▼ Step 7: Surface Meshing
Now all necessary intervals have been set, and the meshing can proceed. Begin by mesh
front surface (with the hole) using the paving algorithm. This is done in two steps. First se
scheme for that surface toPave, then issue the command toMesh . Since the surface to be
paved is number 11, issue the command:1

cubit> surface 11 scheme pave

With the meshing scheme specified, we proceed to mesh the surface:

cubit> mesh surface 11

A hidden line view of the result is shown Figure 2-9.

Figure 2-8: Geometry with curve labeling turned on.

1. The surface id can be obtained using either of the two methods described in the previous step.

17

28

21

26
17

28

21

26

18

27
24

28
18

27
24

28

19

25

23

27

19

25

23

27

20

26

22
25

20

26

22
25

24

23

22

21
16

24

23

22

21
16

20

19

18

17
15

20

19

18

17
15

16

15

16

15

25

24

23

26

22

21
16

27

20

28

19

18

17
15
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual13

CHAPTER 2: Tutorial

shing
ses, the
matic
weep

source

:

se the

fault
▼ Step 8: Volume Meshing
The volume mesh can now be generated. Again, the first step is to specify the type of me
scheme should be used and the second step is to issue the order to mesh. In certain ca
scheme can be determined by CUBIT automatically. For sweepable volumes, the auto
scheme detection algorithm also identifies the source and target surfaces of the s
automatically.

To instruct the code to automatically determine the meshing scheme and in this case the
and target surfaces, enter the command

cubit> volume 3 scheme auto

To view the results of auto scheme selection, certain data about the volume can be listed

cubit> list volume 3

The results of this command are shown in Figure 2-10; note that the scheme, and in this ca
source and target surfaces, are reported toward the top of the list output.

With the scheme set, themesh command may be given:

cubit> mesh volume 3

The final meshed body will appear in the display window, as shown in Figure 2-11. By de
only the surface mesh is drawn, if you want to see all of the elements you can enter:

cubit> draw hex all in volume 3

Figure 2-9: Surface meshed with paving.
14 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2: Tutorial

sing
▼ Step 9: Inspecting the Model
The type, quality, and speed of the rendering the image can be controlled in CUBIT by u
severalgraphics mode commands, such asWireframe , Hiddenline , andSmoothshade .
For example:

Volume Entity (Id = 3)

 Meshed: No

 Mesh Scheme: sweep (automatically selected)

 Source: Surface 11 (Id=11)

 Target: Surface 12 (Id=12)

 Sweep Smooth Scheme: Off

 Smooth Scheme: equipotential fixed

 Interval Count: 1

 Interval Size: 1.000000

 Block Id: 0

7 Owned Surfaces: Mesh Scheme Interval:

______Name______ Id +is meshed Smooth Scheme Count Size

Surface 10 10 submap- winslow fixed 1 1

 Periodic Interval: 3, Soft

Surface 11 11 pave- winslow fixed 1 1

Surface 12 12 pave- winslow fixed 1 1

Surface 13 13 map- winslow fixed 1 1

Surface 14 14 map- winslow fixed 1 1

Surface 15 15 map- winslow fixed 1 1

Surface 16 16 map- winslow fixed 1 1

 In Body 3.

Journaled Command: list volume 3

Figure 2-10: Output from listing volume 3

Figure 2-11: Wireframe view of volume mesh.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual15

CHAPTER 2: Tutorial

..

and
er set

etric
ssume

node-
lock

he user,
and
cubit> graphics mode hiddenline

The hidden line display is illustrated in Figure 2-12. Next, try:

cubit> graphics mode smoothshade

The smoothshade display is also shown Figure 2-12.

For detailed information on the viewing mode options, See “Graphics Modes” on page 29

Although CUBIT automatically computes limited quality metrics after generating a mesh
warns the user about certain cases of bad quality, it is still a good idea to inspect a broad
of quality measures. To do this, enter the command

cubit> quality volume 3

The results of the quality output are shown below. For an explanation of each quality m
along with acceptable ranges, see Figure 2-13. For the purposes of this tutorial, you can a
the quality metrics shown below are in an acceptable range.

▼ Step 10: Defining Boundary Conditions
Let us assume that the we need to define one material type for the entire mesh, and a single
based boundary condition on all surfaces. This accomplished by identifying an Element B
and a Nodeset, respectively; the id numbers assigned to these entities are assigned by t
usually by some convention meaningful to the analysis to be done. The element block
nodeset are identified using the commands:

Figure 2-12: Hiddenline (left) and shaded (right) view of volume mesh.
16 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 2: Tutorial

sually

iled
ms
cubit> block 100 volume 3

cubit> nodeset 100 surface all in volume 3

▼ Step 11: Exporting the Mesh
Finally, the mesh needs to be written to an ExodusII file. This is easily done:

cubit> export genesis ‘brick_with_hole.g’

The filename and extension are arbitrary and, like the block and nodeset numbers, are u
named according to a convention meaningful to the analysis.

▼ Congratulations
You have created your first CUBIT mesh. The following chapters contain more deta
information about using CUBIT and an in-depth description of the meshing algorith
available.

Volume 3 Hex quality, 333 elements:

--

Function Name Average Std Dev Minimum (id) Maximum (id)

 ----------------- --------- --------- -------------- -------------

 Aspect Ratio 4.887e+00 1.312e+00 2.860e+00 (287) 8.866e+00 (142)

 Skew 1.572e-01 1.071e-01 5.640e-03 (332) 4.455e-01 (87)

 Taper 1.067e-15 1.054e-15 1.322e-17 (198) 6.916e-15 (223)

 Element Volume 2.158e+00 1.089e+00 5.727e-01 (31) 4.593e+00 (176)

 Stretch 3.145e-01 8.183e-02 1.557e-01 (148) 4.737e-01 (278)

 Diagonal Ratio 9.830e-01 1.647e-02 9.331e-01 (87) 9.994e-01 (221)

 Dimension 5.330e-01 1.329e-01 2.868e-01 (31) 7.861e-01 (158)

 Oddy 6.200e+01 5.663e+01 1.081e+01 (64) 2.535e+02 (149)

 Condition No. 2.711e+00 8.275e-01 1.675e+00 (64) 5.599e+00 (220)

 Jacobian 1.728e+00 9.345e-01 4.218e-01 (38) 3.870e+00 (64)

 Scaled Jacobian 9.236e-01 6.745e-02 6.467e-01 (109) 9.965e-01 (52)

Journaled Command: quality volume 3

Figure 2-13: Quality table from volume 3’s hex mesh
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual17

CHAPTER 2: Tutorial
18 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

lysis
s no-
he use
del

e or
will
tions
and

r

ing

ntax
Chapter 3: Environment
▼ Introduction…19

▼ Command Syntax…19

▼ Executing CUBIT…21

▼ Session Control…23

▼ Command Recording and Playback…23

▼ Entity Specification…25

▼ Command Line Editing…28

▼ Graphics…29

▼ Graphics Enhancements…49

▼ Listing Information…50

▼ Introduction
The CUBIT user interface is designed to fill multiple meshing needs throughout the ana
process. The user interface options include a traditional command line interface as well a
graphics and batch mode operation. This chapter covers the interface options as well as t
of journal files, control of the graphics, a description of methods for obtaining mo
information, and an overview of the help facility.

▼ Command Syntax
The execution of CUBIT is controlled either by entering commands from the command lin
by reading them in from a journal file. Throughout this document, each function or process
have a description of the corresponding CUBIT command; in this section, general conven
for command syntax will be described. The user can obtain a quick guide to proper comm
format by issuing the<keyword> help command; see “Obtaining Help” on page 58 fo
details.

CUBIT commands are described in this manual and in the help output using the follow
conventions. An example of a typical CUBIT command is:

{volume_list} Scheme Project [Source {surface_list} Target {surface_list}]

The commands recognized by CUBIT are free-format and abide by the following sy
conventions.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual19

CHAPTER 3: Environment

rom

rs

1,
at

le

m

hell

for

te

ers
• Case is not significant.

• The “#” character in any command line begins a comment. The “#” and any characters
following it on the same line are ignored.

• Commands may be abbreviated as long as enough characters are used to distinguish it f
other commands.

• The meaning and type of command parameters depend on the keyword. Some paramete
used in CUBIT commands are:

• Numeric: A numeric parameter may be a real number or an integer. A real
number may be in any legal C or FORTRAN numeric format (for example,
0.2, -1e-2). An integer parameter may be in any legal decimal integer form
(for example, 1, 100, 1000, but not 1.5, 1.0, 0x1F).

• String: A string parameter is a literal character string contained within sing
or double quotes. For example,‘This is a string’ .

• Filename:A filename parameter must specify a legal filename on the syste
on which CUBIT is running. The filename must be specified using either a
relative path (../cubit/mesh.jou), a fully-qualified path (/home/jdoe/cubit/

mesh.jou), or no path; in the latter case, the file must be in the working
directory or in a directory specified using the -path option to CUBIT (see
“Executing CUBIT” on page 4 for details.) Like a string, the file name must
be contained within single or double quotes.Environment variables and
aliases may not be used in the filename specification; for example, the C-S
shorthand of referring to a file relative to the user’s login directory (~jdoe/

cubit/mesh.jou) is not valid.

• Toggle:Some commands require a “toggle” keyword to enable or disable a
setting or option. Valid toggle keywords are “on”, “ yes”, and “true ” to enable
the option; and “off ”, “ no”, and “false ” to disable the option.

• Each command typically has either:

• an action keyword or “verb” followed by a variable number of parameters,
example

Mesh Volume 1

HereMesh is the verb andVolume 1 is the parameter.

• or a selector keyword or “noun” followed by a name and value of an attribu
of the entity indicated, for example

Volume 1 Scheme Project Source 1 Target 2

HereVolume 1 is the noun,Scheme is the attribute, and the remaining data are paramet
to theScheme keyword.

The notation conventions used in the command descriptions in this document are:

• The command will be shown in a format thatlooks like this ,

• A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter. The
value can be an integer, a range of integers, a real number, a string, or a string denoting a
20 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

to

on

ed

ill

s to

ers
and

he
le
filename or toggle. The valid value types should be evident from the command or the
command description.

• A series of words delimited by a vertical bar (choice1 | choice2 | choice3) signifies a
choice between the parameters listed.

• A word enclosed in square brackets ([optional]) signifies optional input which can be
entered to modify the default behavior of the command.

▼ Executing CUBIT

Execution Command Syntax
The command syntax recognized by CUBIT is:

cubit [-help] [-initfile <val>] [-noinitfile] [-solidmodel <val>] [-batch] [-
nographics] [-nojournal] [-journalfile <file>] [-maxjournal <val>] [-display
<val>] [-noecho] [-debug=<val>] [-information={on|off}] [-
warning={on|off}] [-Include <path>] [-fastq <fastq_file>]
[<input_file_list>][<var=value>]...

where the quantities in square brackets[-options] are optional parameters that are used
modify the default behavior of CUBIT and the quantities in angle brackets<values> are values
supplied to the option. Optional arguments to CUBIT are summarized below.

-help Print a short usage summary of the command syntax to the terminal and exit.

-initfile <val> Use the file specified by<val> as the initialization file instead of the default
initialization file $HOME/.cubit .

-noinitfile Do not read any initialization file. The default behavior is to read the initializati
file $HOME/.cubit or the file specified by the-initfile option if it exists.

-solidmodel <val> Read the ACIS solid model geometry information from the file specifi
by <val> prior to prompting for interactive input.

-batch Specify that there will be no interactive input in this execution of CUBIT. CUBIT w
terminate after reading the initialization file, the geometry file, and the<input_file_list>.

-nographics Run CUBIT without graphics. This is generally used with the-batch option or
when running CUBIT over a line terminal.

-display Sets the location where the CUBIT graphics system will be displayed, analogou
the DISPLAY environment variable for the X Windows system.

-driver <driver_type> Sets the type of graphics display driver to be used. Available driv
depend on platform, hardware, and system installation. Typical drivers include X11
OpenGL.

-nojournal Do not create a journal file for this execution of CUBIT. This option performs t
same function as theJournal Off command. The default behavior is to create a new journal fi
for every execution of CUBIT.

-journalfile <file> Write the journal entries to<file> . The file will be overwritten if it already
exists.

-maxjournal <val> Only create a maximum of<val> default journal files. Default journal
files are of the formcubit.#.jou where # is a number in the range 01 to 99.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual21

CHAPTER 3: Environment

n as

e

le.

be
nd

file
iption

ues
otes.),

the
option
and

Q file

ich

in

by
ute
e for

em.

ally
, such

esh
-noecho Do not echo commands to the console. This option performs the same functio
theEcho Off command. The default behavior is to echo commands to the console.

-debug=<val> Set to “on” the debug message flags indicated by<val> , where<val> is a
comma-separated list of integers or ranges of integers, e.g. 1,3,8-10.

-information={on|off} Turn on/off the printing of information messages from CUBIT to th
console.

-warning={on|off} Turn on/off the printing of warning messages from CUBIT to the conso

-Include=<include_path> Set the patch to search for journal files and other input files to
<include_path>. This is useful if you are executing a journal file from another directory a
that journal file includes other files that exist in that directory also.

-fastq=<fastq_file> Read the mesh and geometry definition data in the FASTQ
<fastq_file> and interpret the data as FASTQ commands. See Reference [5] for a descr
of the FASTQ file format.

<variable=value> APREPRO variable-value pairs to be used in the CUBIT session. Val
can be either doubles or character type (character values must be surrounded by double qu

Command options can also be specified using theCUBIT_OPT environment variable (See
“User Environment Settings” on page 5.)

<input_file_list> Input files to be read and executed by CUBIT. Files are processed in
order listed, and afterwards interactive command input can be entered (unless the -batch
is used.)Read the mesh and geometry definition data in the FASTQ file <fastq_file>
interpret the data as FASTQ commands. See Reference [5] for a description of the FAST
format.

Environment Variables
CUBIT uses the following environment variables.

DISPLAY: X-Window display to which the graphics window should be displayed (and wh
screen should be used on displays with multiple monitors).

CUBIT_OPT: Execution command line parameter options. Any valid options described
“Execution Command Syntax” on page 21.

CUBIT_LICENSE: Directory location of MSC Aries tetrahedral mesher license file;
default, this license file is located in /var/scrl1/.mscCAERoot on 836 and 880 LAN comp
servers. Contact the CUBIT development team for more information on obtaining a licens
this module.

HOOPS_PICTURE: Sets the driver type and display to be used by the graphics syst
Takes precedence over the DISPLAY environment variable. The format isdriver_type/
machine_name:display . An example isopengl/mycomputer:0.0 .

Initialization File
If the file $HOME/.cubit or the file specified by the-initfile <val> option exists when CUBIT
begins executing, it is read prior to beginning interactive command input. This file is typic
used to perform initialization commands that do not change from one execution to the next
as turning off journal file output, specifying default mouse buttons, setting geometric and m
entity colors, and setting the size of the graphics window.
22 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

hed

lifiers

piled,

l.

from
ted

text
ion,
from

BIT.

BIT
ing an
t of
▼ Session Control
The following commands are used to control CUBIT execution.

• Exit : The CUBIT session can be discontinued with either of the following commands

Exit

Quit

• Reset: A reset of CUBIT will clear the CUBIT database of the current geometry and mesh
model, allowing the user to begin a new session without exiting CUBIT. This is accomplis
with the command

Reset [Genesis | Blocks | Nodesets | Sidesets]

A subset of portions of the CUBIT database to be reset can be designated using the qua
listed. Advanced options controlled with theSet command are not reset.

• Version: To determine information on version numbers, enter the commandVersion .. This
command reports the CUBIT version number, the date and time the executable was com
and the version numbers of the ACIS solid modeler and the HOOPS library linked into the
executable. This information is useful when discussing available capabilities or software
problems with CUBIT developers.

• Command echo:By default, commands entered by the user will be echoed to the termina
The echo of commands is controlled with the command:

[set] echo {on | off}

▼ Command Recording and Playback
Sequences of CUBIT commands can be recorded and used as a means to control CUBIT
ASCII text files. Command or “journal” files can be created within CUBIT, or can be crea
and edited directly by the user outside CUBIT.

Journal File Creation & Playback
Command sequences can be written to a text file, either directly from CUBIT or using a
editor. CUBIT commands can be read directly from a file at any time during CUBIT execut
or can be used to run CUBIT in batch mode. To begin and end writing commands to a file
within CUBIT, use the command

Record ’<filename>’

Record Stop

Once initiated, all commands are copied to this file after their successful execution in CU

To replay a journal file, issue the command

Playback ’<filename>’

Journal files are most commonly created by recording commands from an interactive CU
session, but can also be created using automatic journalling (see below) or even by edit
ASCII text file. Commands being read from a file can represent either the entire se
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual23

CHAPTER 3: Environment

shes to

rnal

ournal
er

the
s are
tion
tion

e is

lling

ands
d
the

using
urnal

lled
commands for a particular session, or can represent a subset of commands the user wi
execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from jou
files. Playback from a journal file can be terminated by placing theStop command after the last
command to be executed; this causes CUBIT to stop reading commands from the current j
file. Playback can be paused using thePause command; the user is prompted to hit a key, aft
which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with
parameterization available through the Aprepros capability in CUBIT (see ...). Journal file
also useful when a new finite element model is being built, by saving a set of initializa
commands then iteratively testing different meshing strategies after playing that initializa
file.

Automatic Journal File Creation
By default, CUBIT automatically creates a journal file each time it is executed. The fil
created in the current directory, and its name begins with the word “cubit ” followed by a
number between 01 and 991, e.g. cubit01.jou . Journal file names end with a “.jou”
extension, though this is not strictly required for user-generated journal files. If no journa
is desired, the user may start CUBIT with the-nojournal command line option or use the
command:

[set] Journal {Off | On}

Turning journalling back on resumes writing commands to the same journal file2.

Most CUBIT commands entered during a session are journalled; the exceptions are comm
that require interactive input (such asZoom Cursor), some graphics related commands, an
the Play command. All graphics related commands may be enabled or disabled with
command:

Journal Graphics {On | Off}

The default isJournal Graphics Off .

When an entity is specified in a command using its name, the command may be journalled
the entity name, or by using the corresponding entity type and id. The method used to jo
commands using names is determined with the command:

Journal Names {On | Off}

The default isJournal Names On .

Note: If an entity is referred to using its entity type and id, the command will be journa
with the entity type and id, even if the entity has been named.

1. This number increments for each new journal file generated in that directory

2. If CUBIT is started with the-nojournal option, journalling cannot be resumed with theJournal On command.
24 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

and
cts on
▼ Restart

CUBIT has a limited restart capability, which can be used to recover

the geometry and mesh saved in a previous session. A session is saved

and restored using the following commands:

Save [Restart] [[File] ’filename’] [<entity_list>]

Restore [Restart] [[File] ’filename’]

If a file name is entered, the geometry is saved to or restored from

that file. On the save command, if an entity list is given, only

those geometry entities are saved in the geometry file.

CUBIT uses geometry attributes to embed restart information in the

geometry file; by default, the file used to store geometry is named

"cubit_geom.sat". If mesh is present when Save is entered, this data

is stored in another file, named "cubit_mesh.g". Care should be taken

not to overwrite any restart files the user wants to save beyond the

next invocation of Save.

Data that are not saved when Save is used include global settings data

(debug flags, persistent ids, etc.) and graphics options (shading

mode, background color, etc.). These data will be incorporated into

the restart capability in a future release.

In addition to saving all possible attributes with the geometry, users

have the option of turning on or off individual attributes,

e.g. entity ids, groups, etc. See (section on attributes in chapter

4) for more details.

▼ Entity Specification
CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers
sometimes names. IDs and names are used in most commands to specify which obje
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual25

CHAPTER 3: Environment

s in a
t is

put.

n a
ing

two
2 or 3

ies
nesis

the
be
which the command is to operate. These objects can be specified in CUBIT command
variety of ways, which are best introduced with the following examples (entity range inpu
italicized):

• General ranges:Surface 1 2 4 to 6 by 2 3 4 5Scheme Pave

• Combined geometry, mesh, and genesis entities:DrawSideset 1 Curve 3 Hex 2 4 6

• Geometric topology traversal:Vertex in Volume 2Size 0.3

• Mesh topology traversal:DrawEdge in Hex 32

• All keyword: List Block all

• Expandkeyword: my_curve_group expandScheme Bias Factor 1.5

• Exceptt keyword: List Curve 1 to 50 except 2 4 6

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:

• General range parsing

Entity ids can be listed in ranges using multiple combinations of id lists (3 4 5 ...) and/or id
ranges (1 to 7 by 2). In addition, the “all” identifier can be used anywhere a range is in
For example:

Draw Surface 1 2 4 to 6 Vertex all
• Topological traversal

Topological traversal is indicated using the “in” identifier, can span multiple levels i
heirarchy, and can go either up or down the topology tree. For example, the follow
entity lists are all valid:

• Vertex in Volume 3

• Volume in Vertex 2 4 6

• Curve 1 to 3 in Body 4 to 8 by 2

If ranges of entities are given on both sides of the “in” identifier, the intersection of the
sets results. For example, in the last command above, the curves that have ids of 1,
and are also in bodies 4, 6 and 8 are used in the command.

At this time, topology traversal is valid only within a particular entity type (mesh entit
or geometry entities) and not across entity types; no traversals are provided for ge
entities. Therefore, the following entity lists would not be valid:

• Node in Surface 3 (invalid!)

• Surface in Edge 362 (invalid!)

• Surface in Nodeset 3 (invalid!)

• Exclusion

Entity lists can be entered then filtered using the “except” identifier. This identifier and
ids following it apply only to the immediately preceeding entity list, and are taken to
the same entity type. For example, the following entity lists are valid:

• Curve all except 2 4 6
26 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

n be
tions
m-
are

as an
des

1 and
avior

st; of
fol-

rs have
word
er list
ti-
lists
• Curve 1 2 5 to 50 except 2 3 4

• Curve all except 2 3 4 in surface 2 to 10

• Curve in surface 3 except 2 (produces empty entity list!)

• Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities ca
of different type (vertex, curve, etc.). Operations on groups can be classified as opera
on the group itself or operations on all entities in the group. If a group identifier in a co
mand is followed immediately by the ‘expand’ qualifier, the contents of the group(s)
substituted in place of the group identifier(s); otherwise the command is interpreted
operation on the group as a whole. If a group preceding the ‘expand’ qualifier inclu
other groups, all groups are expanded in a recursive fashion.

For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces
2 are bounded by curves 2, 3, 4 and 5. The commands in Table 3-1 illustrate the beh
of the ‘expand’ qualifier.

The ‘expand’ qualifier can be used anywhere a group command is used in an entity li
course, commands which apply only to groups will be meaningless if the group id is
lowed by the ‘expand’ qualifier.

Precedence of “Except” and “In”

Several keywords take precedence over others, much the same as some operato
greater precedence in coding languages. In the current implementation, the key
“Except” takes precedence over other keywords, and serves to separate the identifi
into two sections. Any identifiers following the “Except” keyword apply to the list of en
ties excluded from the entities preceding the “Except”. Table 3-2 shows the entity
resulting from selected commands.

Table 3-1: Parsing of group commands; Group 1 consists of Surfaces 1-2
and Curve 1; Surfaces 1 and 2 are bounded by Curves 2-5.

Command Entity list produced

Curve in group 1 Curve 1

Curve in group 1 expand Curves 1, 2, 3, 4, 5

Table 3-2: Precedence of “Except” and “In” keywords; Group 1 consists of
Surfaces 1-2 and Curve 1.

Command Entity list produced

Curve all except 1 in Group 1 (All curves except curve 1)

Curve all except 2 3 4 in Surf 2 to 10 (All curves except 2, 3, 4)
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual27

CHAPTER 3: Environment

1 in
the
ain-

lists
, 3

e
s this
d to

for
of
y list.

e is

anty”.
In the first command, the entities to be excluded are the contents of the list “[Curve]
Group 1”, that is the intersection of the lists “Curve 1” and “Curve in Group 1”; since
only curve in Group 1 is Curve 1, the excluded list consists of only Curve 1. The rem
ing list, after removing the excluded list, is all curves except Curve 1.

In the second command, the excluded list consists of the intersection of the
“Curve 2 3 4” and“Curve in Surf 2 to 10”; this intersection turns out to be just Curves 2
and 4. The remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can b
used. However, there can be exceptions to this general rule, because of ambiguitie
syntax would produce. Currently, the only exception to this rule is the command use
define a sideset for a surface with respect to an owning volume.

▼ Command Line Editing
The CUBIT command line interface supports an EMACS-style line editing input package
entering commands1. It allows the user to edit the current line and move through a list
previous commands. Commands replayed from a journal file are not saved in the histor
The keys used for command line editing are defined in Table 3-3.

1. The command line interface package used in CUBIT is Copyright 1991 by Chris Thewalt. The following copyright notice

appears in the source code: “Permission to use, copy, modify, and distribute this software for any purpose and without fe

hereby granted, provided that the above copyright notices appear in all copies and that both the copyright notice and this

permission notice appear in supporting documentation. This software is provided “as is” without express or implied warr

Table 3-3: Command Line Interface Line Editing Keys

Keya Function

^A, ^E Move to beginning or end of line, respectively

^F, ^B Move forward or backward one position in the current line.

^D Delete the character under the cursor. Sends end-of-file if no characters on
the current line.

^H, DELb Delete the character to the left of the cursor.

^K Delete from the current cursor position to the end of the line

^P, ^N Move to the previous or next line in the history buffer.

^L Redraw the current line.

^U Delete the entire line.

NL, CRc Places current input on the history list, appends a newline and returns that
line to the CUBIT program for parsing.

? Provides “instant” help; see “Obtaining Help” on page 58 for details.
28 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

or the
on of
d by

h a
etry
and

thods
tities

us
into
lay
an
in
verall
g, to

rrent

play,

rawn,
mode:
▼ Graphics
The graphics display windows present a graphical representation of the geometry and/
mesh. The quality and speed of rendering the graphics, the visibility, location and orientati
objects in the window, and the labeling of entities, among other things, can all be controlle
the user.

Unless the-nographics option was entered on the command line, a graphics window wit
black background and an axis triad will appear when CUBIT is first launched. The geom
and mesh will appear in this window, and can be viewed from various camera positions
drawn in various modes (wireframe, hiddenline, shaded, etc.). This section will discuss me
for manipulating the graphics with the mouse and for controlling the appearance of en
drawn in the graphics window.

Graphics in CUBIT operates on the principle of a “display list”, which keeps track of vario
entities known to the graphics. All geometry and mesh objects created in CUBIT are put
the display list automatically. The visibility and various other attributes of entities in the disp
list can be controlled individually. In addition, CUBIT can also optionally display entities in
temporary mode, independent of their visibility in the display list. Drawing of items
temporary mode can be combined with the display list to customize the appearance. The o
display is controlled by various attributes like graphics mode, camera position, andlightin
further enhance the graphics functionality.

Updating the Display
Among the most common graphics-related commands isDisplay . This command clears all
highlighting and temporary drawing, and then redraws the model according to the cu
graphics settings. Two related commands areGraphics Flush , which redraws the graphics
without clearing highlighting or temporary drawing, andGraphics Clear , which clears the
graphics window without redrawing the scene, leaving the window blank.

Note: Although most changes to the model are immediately reflected in the graphics dis
some are not (for graphics efficiency). TypingDisplay will update the display after
such commands.

Graphics Modes
By default, the scene is viewed as a wireframe model. That is, only curves and edges are d
and surfaces are transparent. Surfaces can be drawn differently by changing the graphics

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Truehiddenline |
Flatshade | Polygonfill | Painters}

a. The notation ^X refers to holding down the control key and then typing the letter X.
Case is not significant.

b. See the documentation for your keyboard/workstation to determine which key sends
the DEL character.

c. NL is a newline, typically ^J, CR is a carriage return entered the normal way you end
a line of text.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual29

CHAPTER 3: Environment

played
shing

re

he

arance
ore
:

nt

o

that

o
line

hed. If
. This is
The first three modes listed above are used most often; a sample geometry and mesh dis
in each of these modes is shown in Figure 3-1. These modes have the following distingui

characteristics:

• WireFrame - Surfaces are transparent. This is the fastest graphics mode.

• HiddenLine - Surfaces are not drawn, but they obscure what is behind them, giving a mo
realistic representation of the view.

• SmoothShade - Surfaces are filled and shaded. Shaded colors are interpolated across t
entire surface. This is the slowest graphics mode, but produces the most realistic results.

The remaining modes are useful in specific circumstances, can be used to refine the appe
of the display, or result in a display of slightly lower quality but one which is generated m
quickly. Examles of each are shown in Figure 3-2; their distinguishing characteristics are

• FlatShade - Similar to Smoothshade, but with each facet of the surface drawn in a consta
instead of interpolated color. Gives slightly poorer display quality but with increase speed
compared to Smoothshade.

• PolygonFill - Surfaces are filled but not shaded. This is a relatively fast mode, but has
relatively poor quality.

• Painters - Similar to Smoothshade mode, butmayrender more quickly, albeit with poorer
quality. This mode is slightly slower than FlatShade mode on most machines.

• Transparent - Renders surfaces as semi-transparent shaded images, allowing objects t
shine-through from behind. Is not supported on all platforms, and generally requires
advanced graphics hardware.

• Truehiddenline - Similar to Hiddenline mode, but gives better results with a slight speed
penalty. TrueHiddenLine mode also gives you additional options:

Graphics TrueHiddenLine Visibiltiy {on|off} - If this option is turned off,
TrueHiddenLine mode looks the same as HiddenLine mode. If it is turned on, geometry
falls behind a surface is dimmed instead of invisible.

Graphics TrueHiddenLine Dim Factor <factor> - This determines how dim the lines
behind surfaces are drawn. Factor may range from 0 (invisible) to 1 (full brightness).

Graphics TrueHiddenLine Pattern <pattern> - This determines what pattern is used t
draw lines behind surfaces (e.g. dotted, dashed, etc.; see online help for a list of valid
patterns).

There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are mes
Graphics Use Facets is on, the mesh facets (element faces) are used to shade the model

Figure 3-1: Examples of three most common viewing modes in CUBIT; Wireframe (left);
Hiddenline (center); Smoothshade (right).

Figure 3-2: Examples of other viewing modes in CUBIT; Flatshade (top left); Polygonfill(top
right); Painters(bottom left); Truehiddenline (bottom right).
30 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

; see

f, or

This

cified
ntity

light

drawn

ing

re
particularly helpful for curved surfaces which may cut through some of the mesh faces
Figure 3-3.

Drawing and Highlighting Entities
In order to effectively visualize the model, it is often necessary to draw an entity by itsel
several entities as a group. This is easily done with the command

Draw {Entity specification} [Add]

where Entity specification is an entity list as descibed in “Entity Specification” on page 25.
command clears the display before drawing the specified entity or entities. If theAdd option is
specified, the given entity is added to what is already drawn on the screen. The entities spe
in this command are drawn regardless of their visibility setting (see “Geometry and Mesh E
Visibility” on page 41 for more details about visibility).

Entities can be highlighted using the command

Highlight {Entity specification}

This command highlights the specified entities in the current display with the current high
color. Highlighting can be removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, typeDisplay .

Drawing Other Objects

In addition to the common geometry, mesh and genesis entities, other objects may be
with variations of the Draw command. As with the other Draw commands, typingDisplay after
drawing these objects will restore the scene to its normal display.

• Entity Normals

The normal to a surfaces, face, or tri may be drawn with the command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face | Tri]

The normal is drawn as a line of lengthlength (a length of 1 is the default), starting at the
centroid of the entity, pointing in the direction of the entity’s normal. If the normal is be

Figure 3-3: A meshed cylinder shown with graphics facets off (left) and graphics facets on
(right); note how geometry facets on the curved surface obscure mesh edges when facets a

off.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual31

CHAPTER 3: Environment

n by

ith the

wn
t

three

. These
and

with
lways

phics
tion
own;
ble
this
s are

1

drawn for a surface, the normal for all faces or tris that belong to a surface may be draw
using theFace orTri qualifier with the command.

• Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed w
sweep algorithm, the source and target may be visually identified with the command

Draw Volume <volume_id_range> [Source][Target] [Length <size>]

If theSource keyword is included, the normal of the source surface or surfaces will be dra
in green into the specified volume. If theTarget keyword is included, the normal of the targe
surface or surfaces will be drawn in red into the specified volume.

• Model Axis

The model axis may be drawn with the command

Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the
coordinate directions. The length of those lines is determined by thelength parameter, which
defaults to 1.

Mouse-Based View Navigation
The mouse can be used to navigate through the scene using various view transformations
transformations are accomplished by clicking a mouse button in the graphics window
dragging, sometimes while holding a modifier key such as Shift or Control. When run
graphics on, CUBIT is always in mouse mode; that is, mouse-based transformations are a
available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the gra
window and then either holding down a mouse button and dragging, or by clicking on a loca
in the graphics window. Some functions also require one or more modifier keys to be held d
the modifier keys used in CUBIT are Shift (Sh), Control (Ctl), and Alt. Each of the availa
view transformations has a default binding to a mouse button-modifier key combination;
binding can be changed by the user if desired. Transformations and button mapping
summarized in Table 3-4.

Table 3-4: Default Mouse Function Mappings

Function Description Binding

Rotate Rotates the scene about the camera axis. Dragging the mouse near the
center of the graphics window will rotate about the camera’s X- or Y-axis;
dragging the mouse near the edge of the window will rotate about the Z-axis
(i.e. about the camera’s line of sight). Type au in the graphics window to
see the dividing line between the two types of rotation.

B1

Zoom Zooms the scene in or out by clicking the mouse in the graphics window
and dragging up or down.

B2

Pan "Drags" the scene around with the mouse. B3

Rotate XY Rotates the scene about the X- or Y- camera axis but not about the Z-axis. Alt-B1

Rotate Z Rotates the scene about the Z- camera axis (the camera’s line of sight). Sh-Alt-B
32 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

n be

d.

phics
he

ns to

nd is
an be
he
odes:

s

d at
.

de by
se
Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in Table 3-4 above, ca
modified. There are two ways to assign a function to a button/modifier combination.

First, you can use the command

Mouse Function <function_id> Button <1|2|3> [Shift][Control][Alt].

TypeHelp Mouse Function to see a list of function ids that may be used in this comman

Second, you can assign functions interactively. To do so, first put the pointer into a gra
window and then hit thef key. On-screen instructions will lead you through the rest of t
process.

There is also a simplified function that will map the basic Rotate, Zoom, and Pan functio
unmodified mouse buttons:

Mouse ButtonMap Rotate <rotate_button> Zoom <zoom_button>
Pan <pan_button>

This function will not change the bindings to mouse buttons plus modifier keys.

Navigational Drawing Mode

Navigational drawing is entered when a mouse button is pressed in a graphics window, a
exited when the button is released. While performing navigational drawing, the scene c
drawn in anavigational drawing modeto speed up rendering; the display is returned to t
default drawing mode after the button is released. There are three navigational drawing m

• Wireframe Geometry Mode - In Wireframe Geometry Mode, any visible mesh disappear
and the view changes to a wireframe drawing of the visible geometry. This mode makes
transformations faster, and often makes it easier to locate a feature of interest.

Wireframe Geometry Mode is the default navigational drawing mode, and is enable
startup. Disable the mode by typing a ‘W’ while the mouse is in the graphics window
Reenable the mode by again typing a ’W’ while the mouse is in the graphics window.

The Wireframe Geometry Mode can also be used temporarily as the default drawing mo
typing a ‘P’ while the mouse is in the graphics window. This allows multiple mou

Navigational
Zoom

Zooms the scene by moving both the camera and its focal point forward. Sh-B2

Telephoto
Zoom

Zooms the scene by decreasing the field of view. Sh-Ctl-B2

Zoom Cursor
(Click)

Zooms the scene after user clicks on opposite corners of a box surrounding
the area to zoom.

Ctl-B2

Zoom Cursor
(Drag)

Zooms the scene after user drags a box around the area to zoom. Alt-B2

Pan Cursor Click on new center of view. Sh-B3

Table 3-4: Default Mouse Function Mappings

Function Description Binding
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual33

CHAPTER 3: Environment

nline

x
es

modes
ing a

e
by

. To

is
keys,

the
ame

ified,
e

ve F1
file:

s that
view
in a
transformations without having to wait for a complicated scene to be rendered in hidde
or smoothshade mode after each transformation.

• Model Bounding Box Mode- This mode draws a single box representing the bounding bo
of all existing geometry. This mode is even faster than wireframe geometry mode, but do
not indicate the location of individual entities.

This mode may be active at the same time as any other mode, and overrides the other
when a mouse button is pressed. This mode is off by default. Switch to this mode by typ
‘B’ while the mouse is in the graphics window. Typing ’B’ again will switch to Body
Bounding Box Mode (described below). Typing ’B’ a third time will disable the bounding
box modes.

• Body Bounding Box Mode- This mode is similar to Model Bounding Box Mode, but draws
a separate bounding box for each body in the model. This makes it slightly easier to locat
items in the scene, without a substantial penalty in rendering speed. Switch to this mode
typing a ‘B’ while in Model Bounding Box mode, and while the mouse is in the graphics
window.

It is also possible to remain in the normal drawing mode while navigating with the mouse
do so, disable wireframe geometry mode and the bounding box modes.

Saving and Restoring Views

After performing view transformations, it may be useful to return to a previous view. A view
restored by setting the graphics camera attributes to a given set of values. The following
pressed while the pointer is in the graphics window, provide this capability:

V - Restores the view as it was the last timeDisplay was entered.

F1 to F12 - These function keys represent 12 saved views. To save a view, hold down
Control key while pressing the function key. To restore that view later, press the s
function key without the Control key.

You can also save a view by entering the command

View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is spec
the view can be restored by pressingV in the graphics window. If a position is specified, th
view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always ha
refer to a front view of the model, the following commands could be entered into a .cubit

From 0 0 1

At 0 0 0

Up 0 1 0

Graphics Autocenter On

View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensure
the model will be centered each time the view is restored. The final command saves the
parameters in position 1. The view can be restored by pressing F1 while the pointer is
graphics window.
34 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

and
ntity

ning
cated
h or
hted
. The

ed in

d

of
ox

m

ot
nd

e

Selecting Entities with the Mouse
Many of the commands in CUBIT require the specification of an entity on which the comm
operates. These entities are usually specified using an object type and ID (see “E
Specification” on page 25) or a name. The ID of a particular entity can be found by tur
labels on in the graphics and redisplaying; however, this can be cumbersome for compli
models. CUBIT provides the capability to select with the mouse individual geometry, mes
genesis entities. After being selected, the ID of the entity is reported and the entity is highlig
in the scene. After selecting the entities, other actions can be performed on the selection
various options for selecting entities in CUBIT are described below, and are summariz
Table 3-5.

Entity Selection

Selecting entities typically involves two steps:

1) Specifying the type of entity to select

Table 3-5: Picking and key press operations on the picked entities.

Key Action

Ctl-B1 Pick entity of the current picking type.

Sh-Ctl-B1 Add picked entity of the current picking type to current picked entity list.

Tab Query-pick; pick entity of current picking type which is below the last-picked entity.

N Lists what entities are currently selected

L Lists basic information about each selected entity. This is similar to entering a List comman
for each selected entity

G Lists geometric information about the selection. As if the List Geometry command were
issued for each selected entity. If there are multiple entities selected, a geometric summary
all selected entities is printed at the end, including information such as the total bounding b
of the selection

I Makes the current selection invisible. This only affects entities that can be made invisible fro
the command line (i.e., geometric entities).

Shift-Z Zoom in on the current selection.

E Echo the ID of the selection to the command line.

A Add the current selection to the picked group. Only geometry will be added to the group (n
mesh entities). If a selected entity is already in the picked group, it will not be added a seco
time.

R Remove the current selection from the picked group. If a selected entity was not found in th
picked group, this command will have no effect.

C Clear the picked group. The picked group will be empty after this command.

M Lists what entities are currently in the picked group.

D Display and select the entities in the picked group.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual35

CHAPTER 3: Environment

curve
taining

his
e the
d an
icked
difier

of
cking
e so
es are

n be
view
ted
new

ve to
s that

h the

and
. By
ted at
ady

dow.
hese

3-5

amed
tive
Clicking on the scene can be interpreted in more than one way. For example, clicking on a
could be intended to select the curve, a mesh edge owned by the curve, or a sideset con
the curve. The type of entity the user intends to select is called thepicking type.

In order for CUBIT to correctly interpret mouse clicks, the picking type must be indicated. T
can be done in one of two ways. The easiest way to change the picking type is to plac
pointer in the graphics window and enter the dimension of the desired picking type an
optional modifier key. The dimension corresponds to the dimension of the objects being p
(0-vertex/node, 1-curve/edge, 2-surface/face, 3-volume/element, 4-body). If a Shift mo
key is held while typing the dimension, the picking type is set to the mesh entity
corresponding dimension, otherwise the geometry entity of that dimension is set as the pi
type. For example, typing 2 while the pointer is in the graphics window sets the picking typ
that geometric surfaces are picked; typing Shift-1 sets the picking type so that mesh nod
picked.

The picking type can also be set using the command

Pick <entity_type>

where entity_type is one of the following:Body , Volume , Surface , Curve , Vertex , Hex,
Tet, Face, Tri , Edge , Node , orDicerSheet .

2) Selecting the entities.

To select an object, hold down the control key and click on the entity (this command ca
mapped to a different button and modifiers, as described in the section on interactive
navigation). Clicking on an entity in this manner will first de-select any previously selec
entities, and will then select the entity of the correct type closest to the point clicked. The
selection will be highlighted and its name will be printed in the command window.

Query-Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to mo
the next closest entity. You can continue to press tab to loop through all possible selection
are reasonably close to the point where you clicked. Shift-Tab will loop backwards throug
same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the shift
control keys while clicking on an object. You can select as many objects as you would like
changing the picking type between selections, more than one type of entity may be selec
a time. When picking multiple entities, each pick action acts as a toggle; if the entity is alre
picked, it is “unpicked”, or taken out of the picked entities list.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command win
There are several other actions which can then be performed on the picked entity list. T
actions are initiated by pressing a key while the pointer is in the graphics window. Table

summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is n
picked , and is automatically created by CUBIT. Other than its relationship to interac
36 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

other
phics

roup
ed

tters.

the
hich

mand
er to

rrect

. The
re
picking, it is identical to other groups and can be operated on from the command line. Like
groups, only geometric entities can be held in the picked group. Table 3-5 lists the gra
window key presses used with thepicked group.

Note: It is important to distinguish between the current selection and the picked g
contents. Clicking on a new entity will select that entity, but will not add it to the pick
group. De-selecting an entity will not remove an entity from the picked group.

Substituting the Selection into Commands

There are three ways to use mouse-based selection to specify entities in commands.

• The selection Keyword

You may refer to all currently selected entities by using the wordselection in a command; the
picked type and ID numbers of all selected entities will be substituted directly forselection .
For example, if Volume 1 and Curve 5 are currently selected, typing

Color selection Blue

is identical to typing

Color Volume 1 Curve 5 Blue.

Note that theselection keyword is case sensitive, and must be entered as all lowercase le

• Echoing the ID of the Selection

Typing ane into a graphics window will cause the ID of each selected entity to be added to
command line at the current insertion point. This is a convenient way to use entities of w
you don’t already know the name or ID.

As an added convenience, the picking type can be set based on the last word on the com
line using the~ key. For example, a convenient way to set the meshing scheme of a cylind
sweep would be as follows:

Volume (hit ~, select cylinder, hit e)Scheme Sweep Source Surface (hit ~, select
endcap, hit e) Target (select other endcap, hit e)

The result will be something similar to

Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or ~ will not select the co
picking type.

• Using the Picked Group in Commands

Like other groups, the picked group may be used in commands by referring to it by name
name of the picked group ispicked . For example, if the contents of the picked group a
Volume 1 and Volume 2, the command

Draw picked

is identical to

Draw Volume 1 Volume 2

Note thatpicked is case sensitive, and must be entered as all lowercase letters.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual37

CHAPTER 3: Environment

esh
then

w the

rage
more
edge
ol.

slices

3-6.

ntrol

the

make
Mesh Slicing
A volume mesh can be viewed one layer at a time using a visualization tool known as m
slicing. This tool divides the elements of one or more volumes into axis-aligned layers, and
allows the mesh to be displayed one layer at a time. Mesh slicing is especially useful to vie
quality of swept meshes that are axis aligned.

Note: Mesh slicing is only intended to be a rough visualization tool. Because the ave
mesh edge length is used to determine the thickness of each layer, a layer may be
than one element deep. Unstructured meshes, meshes with large variations in
length, and non-axis-aligned meshes will be more difficult to visualize with this to

Mesh slicing can be started either by entering a keypress in the graphics window, which
the mesh of the entire model, or by entering the command

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}

which slices only the bodies or volumes indicated, with a plane along the axis specified.

Key presses in the graphics window which control mesh slicing are summarized in Table

Entity Labels
Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Genesis ID. The command to co
labels for mesh entities is

Label {Hex | Face | Edge | Node} <On | Off | Genesis>

Genesis ID labels are only valid after exporting a mesh.

Geometric entities can be labeled with their ID number or with other information using
command

Label {geom_entity_type} <On | Off | Ids | Name [Only | Ids] | Interval |
Firmness | Merge | Size | Scheme>

The meaning of each of each label type is listed below. Note that some label types don’t
sense for every entity type.

• On - The same as Ids.

• Ids - The CUBIT ID of the entity.

Table 3-6: Mesh slicing key press operations.

Key Action

X, Y, or Z Initiate mesh slicing using the X, Y or Z plane, respectively.

J Move the slicing plane in the positive coordinate direction.

K Move the slicing plane in the negative coordiante direction.

S Toggles drawing single or multiple slice layers in the view.

Q Exit from mesh slicing mode.
38 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

se a

as

l

ition
hich

clear

iew
d

s. The
ned
• Name - Name of the entity, if the entity has been named. Default name otherwise.

• Name Only - If the entity has been named, use the name as the label. Otherwise, don’t u
label.

• Name ID - If the entity has been named, use the name as the label. Otherwise, use the ID
the label.

• Interval - The number of intervals set on the entity.

• Firmness - Same as interval, but followed by a letter indicating the firmness of the interva
setting (see chapter 5 for description of firmness settings.)

• Merge - Whether or not the entity has been merged.

• Size - The mesh size set on this entity.

• Scheme - The meshing scheme set for this entity.

Labels for groups of entity types can be turned on or off with the command

Label <All | Geometry | Mesh> <On | Off>

Colors
Color Definitions

CUBIT has a palette of 85 pre-define colors; users may also define their own colors in add
to those define by Cubit. Each color is defined by a name and by its RGB components, w
range from 0 to 1.

To define a color, use either of the commands

Color Define “<name>” RGB <r g b>

Color Define “<name>” R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to
a color definition. This is done with the command

Color Release “<color_name>”

Color names can be listed with the command

Help Color

They are also listed in the appendix of this manual, along with their RGB definitions. To v
a chart of color names and IDs, including those for user-defined colors, use the comman

Draw Colortable

Specifying Colors in Commands

There are three ways to refer to a color in a command. They are

• ID <id>

• name

• User “name”

The first of these three methods may be used for either pre-defined or user-defined color
second method is only valid for pre-defined colors, while the third is only valid for user-defi
colors. Some examples of specifying colors in commands are:

• By ID - Color Volume 1 ID 5
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual39

CHAPTER 3: Environment

jects.

ity,

oth

le,
ever,
an

not take
mand.

o any

nate
color
ange

pply
may

rawn in
ometric
in this

color.
• By Name (Pre-Defined) -Color Volume 1 Red

• By Name (User-Defined) -Color Volume 1 User “mycolor”

Assigning Colors

Colors can be assigned to all geometric entities except for vertices and to some other ob
To assign a color to an entity or other object, use one of the following commands.

Color <entity_specifier> [Mesh][Geometry] [<color> | default]

Color {NodeSet | SideSet | Block} <id_range> <color>

Color Background <color>.

Color Highlight <color>

Color Axis Text <color>

Color {Curve | Vertex | Hex | Face | Edge | Node | Tet | Tri} Labels <color>

Color Lines <color>

Including theMesh keyword will change the color of the mesh belonging to the specified ent
without changing the color of the entity geometry itself. Conversely, including theGeometry
keyword will change the geometry color without changing the mesh color. Including b
keywords is identical to including neither keyword.

Colors are inherited by child entities. If you explicitly set the color for a volume, for examp
all of its surfaces will also be drawn in that color. Once you assign a color to an entity, how
it will remain that color and will no longer follow color changes to parent entities. To make
entity follow the color of its parent after having explicitly set another color, useDefault as the
color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do
effect, however, unless the nodeset, sideset, or element block is drawn with a Draw com

The background color and the color used to draw highlighted entities can be changed t
color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordi
directions. If the background is changed to white, these labels are impossible to read; the
used to draw axis labels can be changed to any color. Changing the axis label color will ch
the text color for both the model axis and the triad (corner axis).

When several entity types are labeled, it can become difficult to determine which labels a
to which entities. To help distinguish which entities are being referred to by the labels, you
want to change the color of labels for specific entity types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not d
the same color as the surface. This is to prevent confusion between mesh edges and ge
curves, and to make the mesh edges more visible. The color used to draw mesh edges
situation is known as the line color, and is gray by default; this color can be changed to any
40 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

by
et the

ed

ts
r case,
nt’s

esh
isible

n

y
ered.

ed to
n
in the

nal

and
Geometry and Mesh Entity Visibility
The visibility of geometric and mesh entities can be turned on or off, either individually,
entity type, by general entity class (mesh, geometry, etc.), or globally. The commands to s
visibility are:

{geom_list} [Mesh][Geometry] Visibility [On|Off]

{Vertex | Hex | Face | Edge | Node} Visibility [On | Off]

Mesh Visibility [On | Off]

Geometry Visibility [On | Off]

If the Mesh keyword is included, only the visibility of the mesh belonging to the specifi
entity is affected. Similarly, if theGeometry keyword is included, only the visibility of the
geometry is affected. Including neither keyword is identical to using both keywords.

Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, i
surfaces are also invisible unless they also belong to some other visible volume. As anothe
if the volume is visible, but a surface is set to invisible, the surface will not follow its pare
visibility setting, but will remain invisible.

The visibility of some entity types has special meaning. If hex visibility is on, internal m
edges become visible. Face visibility only refers to external faces, and faces are only v
when in a shaded graphics mode.

After turning mesh visibility off, all mesh will remain invisible until mesh visibility is turned o
again. This is true no matter what other visibility commands are entered.

Similarly, after turning geometry visibility off, all geometry will remain invisible until geometr
visibility is turned on again. This is true no matter what other visibility commands are ent

Graphics Camera
One way to change what is visible in the graphics window is to manipulate the camera us
generate the scene. A scene camera hasattributesdescribed below, and depicted graphically i
Figure 3-4. The values of these camera attributes determine how the scene appears
graphics window.

• Position (From) - The location of the camera in model coordinates.

• View Direction (At) - The focal point of the camera in model coordinates.

• Up Direction (Up) - The point indicating the direction to which the top of the camera is
pointing. The Up point determines how the camera is rotated about its line of sight.

• Projection - Determines how the three-dimensional model is mapped to the two-dimensio
graphics window.

• Perspective Angle- Twice the angle between the line of sight and the edge of the visible
portion of the scene.

At any time, the camera can be moved back to its original position and view using the comm

View Reset

To see the current settings of these attributes, use the command

List View
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual41

CHAPTER 3: Environment

her
ne in

tion,

ow a
.

ut the
out

he
ra’s
ate
curve
The current value of the view attributes will be printed to the terminal window, along with ot
useful view information such as the current graphics mode and the width of the current sce
model coordinates.

Changing Camera Attributes Using Rotate, Zoom Pan

Commands used to affect camera position or other functions are listed below. All rota
panning, and zooming operations can include theAnimation Steps qualifier, makes the image
pass smoothly through the total transformation. Animation also allows the user to see h
transformation command arrives at its destination by showing the intermediate positions

• Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z}
[Animation Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]

Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_2>
[Animation Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, abo
camera’s “At” point, or about the camera itself. Additionally rotations can be specified ab
any general axis by specifying start and end points to define the general vector. Theright hand
rule is used in all rotations.

Plain degree rotations are in theScreen coordinate system by default, which is centered on t
camera’s At point. TheCamera keyword causes the camera to rotate about itself (the came
From point). TheWorld keyword causes the rotation to occur about the model’s coordin
system. Rotations can also be performed about the line joining the two end vertices of a
in the model, or a line connecting two vertices in the model.

Figure 3-4: Schematic of From, At, Up, and Perspective Angle

Perspective Angle

View From View At

View Up
42 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

butes,
ective
raphics

t. If

the

nd the

t

ea in

and
ity

ouse-
ribed
• Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World]
[Animation Steps <number_steps>]

Pan Cursor

Panning causes the camera to be moved up, down, left, or right. In terms of camera attri
the From point and At point are translated equal distances and directions, while the persp
angle and up vector remain unchanged. The scene can also be panned by a factor of the g
window size.

Screen andWorld indicate which coordinate system<factor> is in. If Screen is indicated
(the default),<factor> is in screen coordinates, in which the width of the screen is one uni
World is indicated,<factor> is expressed in the model units.

ThePan Cursor command is used to indicate the position of the desired view center with
mouse.

• Zooming

Zoom Cursor [Click | Drag] [Animation Steps <number_steps>]

Zoom Screen <factor> [Animation Steps <number_steps>]

Zoom <x_min> <y_min> <x_max> <y_max>
[Animation Steps <number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face | Tri
| Edge | Node} <id_range> [Animation Steps <number_steps>]

Zoom Reset

After enteringZoom Cursor , move the cursor to the graphics window. If theClick option was
entered, click on opposite corners of the desired zoom area; otherwise, drag a box arou
area to zoom by holding down the left mouse button until the desired area is boxed in.Click is
the default option for this command.

Zoom Screen will move the camera<factor> times closer to its focal point. The result is tha
objects on the focal plane will appear<factor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom ar
screen coordinates; for example,Zoom 0 0 .25 .25 will zoom in on the bottom left quarter of
the screen.

Zooming on a particular entity in the model is accomplished by specifying the entity type
ID after enteringZoom . The image will be adjusted to fit bounding box of the specified ent
into the graphics window, and the specified entity will be highlighted.

To center the view on all visible entities, use theZoom Reset command.

Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see “M
Based View Navigation” on page 32) or using the rotate, pan and zoom commands desc
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual43

CHAPTER 3: Environment

ing

ff, an
ould
arallel
se of

g the
hoto
d has

IT

, like
also

ing

view.
that

phics
above. However, the camera attributes can also be modified directly with the follow
commands:

From <x y z>

At <x y z>

Up <x y z>

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is o
orthographic projection is used. With a perspective projection, the scene is drawn as it w
look to a real camera. This gives a three-dimensional sense of depth, but causes most p
lines to be drawn non-parallel to each other. If an orthographic projection is used, no sen
depth is given, but parallel lines are always drawn parallel to each other.

In a perspective view, changing the perspective angle changes the field of view by changin
angle from the line of sight to the edge of the visible scene. The effect is similar to a telep
zoom with a camera. A smaller perspective angle results in a larger zoom. This comman
no effect when graphics perspective is off.

Graphics Windows
Window Size and Position

By default, CUBIT will create a single graphics window when it starts up (to run CUB
without a graphics window, include-nographics on the command line when launching
CUBIT.) The graphics window position and size is most easily adjusted using the mouse
any other window on an X-windows screen. However, the size of the graphics window can
be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>

Graphics WindowSize Maximum

In addition, the graphics window size and position can be controlled by placing the follow
line in the user’s .Xdefaults file:

cubit.graphics.geometry XxY xpos ypos

where theX andY are window width and height in pixels, respectively, andxpos andypos are
the offsets from the lower left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and
Each window has an ID, from 1 to 10, shown in the title bar of the window. Commands
control camera attributes apply to only one window at a time, theactive window.Currently, the
display lists of all windows are identical.

The following commands are used to create, delete, and make active additional gra
windows.

Graphics Window Create [ID]

Graphics Window Delete <ID>

Graphics Window Active <ID>
44 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

ogram
tput

to the
into

options

nt true
on or

The

to a
s. If
. The
Hardcopy Output
The easiest way to make an image file of a graphics window is to use a screen capture pr
outside of CUBIT, such as xv. However, CUBIT also has the ability to save its graphical ou
to files of various formats. The commands for generating hardcopy output files are:

Hardcopy ‘<filename>’ [Encapsulated | Postscript | Eps] [Color |
Monochrome] [Window <window_id=active>]

Hardcopy ‘<filename>’ Pict [xsize <xpixels>] [ysize <ypixels>]
[Window <window_id=active>]

Hardcopy ‘<filename>’ Cgm [ansi | cals | cleartext]
[Window <window_id=active>]

Hardcopy ‘<filename>’ Hpgl [Landscape | Portrait] [xsize <width>
ysize <height>] [window <window_id=active>]

Each of these commands saves the view in the specified window (or the current window),
specified file, in the format indicated. The file can then be sent to a printer or inserted
another document.

Miscellaneous Graphics Options
In addition to the commands discussed above, there are several other graphics system
in CUBIT that can be controlled by the user.

• Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don’t represe
geometric curves, but help visualize the shape of a surface. Silhouette lines can be turned
off with the command

Graphics Silhouette [On|Off]

The pattern used to draw silhouette lines can be set using the command

Graphics Silhouette Pattern [solid | dashdot | dashed | dotted | dash_2dot |
dash_3dot | long_dash | phantom]

• LineWidth

This option controls the width of the lines used in the wireframe and hiddenline displays.
default is 1 pixel wide. The command to set the line width is

Graphics LineWidth <width_in_pixels>

• Highlight LineWidth

This option controls the width of the lines used when highlighting an entity. Setting this
width greater than the global line width often makes it easier to locate highlighted entitie
this setting has not been changed, the line width set in the command above is used
command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

• Text Size.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual45

CHAPTER 3: Environment

this
e is

eads
set

ch as
l point

d all
ill be

h the

w the
u

alled

er, use
This option controls the size of text drawn in the graphics window. The size given in
command is the desired size relative to the default size. The command to set the text siz

Graphics Text Size <size>

• Point Size

This option controls the size of points drawn in the graphics window, such as vertices or h
of vectors; alternatively, the size of points representing nodes or vertices can be
independently of the global point size. The commands to set the point sizes are

Graphics Point Size <size>

Graphics [Node | Vertex] Point Size <size>

• Point Style

Graphical points are drawn as dots by default. They may be drawn as other symbols, su
plus sign. Point styles for nodes and vertices can also be set independently of the globa
style. To change the point style, use the commands

Graphics Point Style <style_integer>

Graphics [Node | Vertex] Point Style <style_integer>

TypeHelp Point Style to see a list of valid style integers and the symbol they represent.

• Graphics Status

All graphics commands can be disabled or re-enabled with the command

Graphics [On | Off]

While graphics are off, changes in the model will not appear in the graphics window, an
graphics commands will be ignored. When graphics are again turned on, the scene w
updated to reflect the current state of the model.

• Model Axis

The model axis may be drawn in the scene at the model origin. The axis is controlled wit
command

Graphics Axis [Type <AXIS | Origin>] [on | off]

The command is used to specify whether the model axis is visible, and to determine ho
axis is drawn. If you includeType Axis , the axis will be drawn as three orthogonal lines; if yo
includeType Origin , the axis will be drawn as a circle at the model origin.

• Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also c
the triad, can be disabled or re-enabled with the command

Graphics Triad [On | Off]

• Scene Border

By default, there is a black border drawn around the scene. To remove or restore the bord
the command

Graphics Border [On | Off]
46 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual47

CHAPTER 3: Environment
48 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

. This

s:

to one of
By
th mini-
nd the
ult color
▼ Graphics Enhancements

Draw Location On Curve

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve)
location can be previewed with the following options:

1) A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
2) A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
3) An xyz position that is moved to the closest point on the given curve.
4) The position of a vertex that is moved to the closest point on the given curve.

 Draw Location On Curve <curve id>
 {Fraction <f> | Distance <d> | Position <xval><yval><zval> |
 Close_To Vertex <vertex_id>}
 [[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance')]

Draw Plane

The ability to preview a plane prior to webcutting or creating the plane is possible with the following command

Draw Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id>
 [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
 [color 'color_name']

Draw Plane Surface <surface_id>
 [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
 [color 'color_name']

Draw Plane {xplane|yplane|zplane} [offset <val>]
 [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
 [color 'color_name']

Draw Plane Normal To Curve <curve_id>
 {fraction <f> | distance <d> | position <xval><yval><zval>
 | close_to vertex <vertex_id>}
 [[from] vertex <vertex_id> (optional for 'fraction' & 'distance')]
 [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
 [color 'color_name']

The first passes a plane through 3 vertices, the second uses an existing plane, the third draws a plane normal
the global axes, and the fourth draws a plane normal to the tangent of a curve at a location along the curve.
default, the commands draw the plane just large enough to intersect the bounding box of the entire model wi
mum surface area. Optionally, you can give a list of bodies to intersect for this calculation. You can also exte
size of the surface by either a percentage distance or an absolute distance of the minimum area size. The defa
is blue, but you can specify a different one. See Appendix B of the CUBIT Users Guide for available colors in
CUBIT.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual49

CHAPTER 3: Environment

rdinate
oint

odel.
 cylin-
but you

llowing

five

by the
.1.

each
Draw Cylinder

The ability to preview a cylinder prior to webcutting is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2>|
 <xyz values>} [Center <x_val> <y_val> <z_val>]
 [[intersecting] Body <id_range>] [extended percentage|absolute <val>]
 [color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line corresponding to a coo
axis, the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin. The center p
through which the cylinder axis passes can also be specified.

By default, the commands draw the cylinder just large enough to just intersect the bounding box of the entire m
Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the length of the
der by either a percentage distance or an absolute distance of the cylinder length. The default color is blue,
can specify a different one. See Appendix B of the CUBIT Users Guide for available colors in CUBIT.

Entity Parsing

Entity parsing has been extended to allow traversal across geometry and mesh entities. For example, the fo
commands are now valid:

Draw Node in Surface 3
Draw Surface in Edge 362
Draw Hex in Face in Surface 2
Draw Node in Hex in Face in Surface 2
Draw Edge in Node in Surface 2

▼ Listing Information
The List commands print information about the current model and session. There are
general areas:Model Summary, Geometry, Mesh, Special Entities, andCUBIT Environment.
The descriptions of these areas includes example output based on the model generated
journal file in Table 3-7. The model consists of a 1x2x3 brick meshed with element size 0

List Model Summary
The following commands print identical summaries of the model: the number of entities of
geometric, mesh, and special type; see Table 3-8 for sample output.

List Model

List Totals
50 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

name.
The

the
le,

n the
hich
e

f the
n be

his
e was
interval
and

ng the

,
rface

he

etric
seful
faces.
on
List Geometry
The following commands list information about the geometry of the model.

list names [group|body|volume|surface|curve|vertex|all]

list {group | body | volume | surface | curve | vertex} [range] [ids]

list {geom_list} [Geometry|Mesh [Detail]]

list {group | body | volume | surface | curve | vertex} <range> {x|y|z}

The first command lists the names in use, and the entity type and id corresponding to each
Specifyingall lists names for all types; other options list names for a specific entity type.
names for an individual entity can be obtained by listing just that entity. Sample output from
list names surface command is shown in Table 3-9. This output shows that, for examp
Surface 2 has the name ‘BackSurface ’.

If ids is specified, the second command provides information on the number of entities i
model and their identification numbers. This can be very useful for large models in w
several geometry decomposition operations have performed. Sample output from thlist
surface ids command is shown in Table 3-10.

The range can be very general using the general entity parsing syntax. Using arange andids
gives a brief synopsis of the local connectivity of the model, e.g. one can list the ids o
surfaces containing vertex 2; see Table 3-11. An intermediately detailed synopsis ca
obtained by placing the range of entities in a group, then listing the group.

The third command provides detailed information for each of the specific entities. T
information includes the entity’s name and id, its meshing scheme and how that schem
selected, whether it is meshed and other meshing parameters such as smooth scheme,
size and count. The entity’s connectivity is summarized by a table of the entity’s subentities
a list of the entity’s supentities. Also, the nodesets, sidesets, blocks, and groups containi
entity are listed.

Specifyinggeometry will additionally list the extent of the entity’s geometric bounding box
the geoemtric size of the entity, and, depending on entity type, other information such as su
normal. See also thelist {entities} x command below.

Specifyingmeshwill additionally list the number of mesh entities of each type interior to t
entity and on bounding subentities.Mesh detail will list the ids of the mesh entities as well,
following the format of thelist ids command above.

Table 3-12 through Table 3-13 show sample output for each of these options.

The fourth command lists the entities sorted by either the x, y, or z coordinate of their geom
center. For example, in a large, basically cylindrical model centered around z-axis, it is u
to list the surfaces of a volume sorted by z to identify the source and target sweeping sur
An example for our toy model appears as Table 3-15, “‘List <entities> x’ Example.,”
page 57.

List Mesh
The following commands list mesh entity information.

list { hex | face | edge | node } <id_range>

list { hex | face | edge | node } <id_range> ids
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual51

CHAPTER 3: Environment

arsing
des

sually

ndary
ge is
ng a

are
hexes,

ug

re not
gled)
cted to

odus
For both of these commands, the range can be very general, following the general entity p
syntax. The first command provides detailed information. For an entity, the information inclu
its id, owning geometry, subentities and supentities. For a hex, the Exodus Id1 is also listed. For
a node, its coordinates are listed. The second command just lists the entity ids, and is u
used in conjunction with complex ranges. Table 3-16 gives examples.

List Special Entities
List {special_type} [range]

Special entities include (element) blocks, sidesets and nodesets (representing bou
conditions), and boundary layers. Like the list geometry and mesh commands, if no ran
specified then the number of entities of the given type is summarized. Otherwise, listi
special entity prints the mesh and geometry it contains. Sample output forlist block, list sideset,
andlist nodesetis shown in Table 3-17, Table 3-18, and Table 3-19. (Some special entities
of interest mainly to developers and are not described here, e.g. whisker sheets, whisker
and dicer sheets.)

List CUBIT Environment
The user may list Information about the current CUBIT environment such asmessage output
settings, memory usage, andgraphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

• Info (Information) messages tell the user about normal events, such as the id of a newly
created body, or the completion of a meshing algorithm.

• Warning messages signal unusual events that are potential problems.

• Error messages signal either user error, such as syntax errors, or the failure of some
operation, such as the failure to mesh a surface.

• Echomessages tell the user what was journaled.

• Debugmessages tell developers about algorithm progress. There are many types of Deb
messages, each one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages a
printed. Information, Warning and Debug message printing can be turned on or off (or tog
with a set command; error messages are always printed. Debugging output can be redire
a file. Current message printing settings can be listed.

List {echo | info | warning | debug }

Set {echo | info | warning } [on|off]

[Set] Debug <index> [on|off]

[Set] Debug <index> File <’filename’>

[Set] Debug <index> Terminal

1. The Exodus Id is the hex’s id in an exported Exodus database, not in the CUBIT model. Before writing the Ex

database the Exodus Id appears as -1.
52 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment

gs to

the

cho
short
ttings,

29.

y use.
Message flags can also be set using command line options, e.g.-warning={on|off} and -
information={on|off} . Debug flags can be set on with-debug=<setting> , where
<setting> is a comma-separated list of integers or ranges of integers denoting which fla
turn on. E.g. to set debug flags 1, 3, and 8 to 10 on, the syntax is-debug=1,3,8-10.

In addition to the major categories, there are some special purpose output settings.

[Set] Logging [on|off] [file <’filename’>]

List Logging

If logging is enabled, all echo, info, warning, and error messages will be output both to
terminal and to the logging file.

List Settings

The List Settings command lists the value of all the message flags, journal file and e
settings, as well as additional information; see Table 3-20. The first section lists a
description of each debug flag and its current setting. Next come the other message se
followed by some flags affecting algorithm behavior.

Graphical Display Information

List view prints the current graphics view and mode parameters; See “Graphics” on page

Memory Usage Information

Users are encouraged to use Unix commands such as ‘top’ to check total CUBIT memor
Developers may check internal memory usage with the following command:

List Memory [‘<object type>’]

Without an object type, the command prints memory use for all types of objects.

Table 3-7: Journal file for List Examples

brick x 1 y 2 z 3
body 1 size 0.1
mesh volume 1
block 1 volume 1
nodeset 1 surface 1
sideset 1 surface 2
group “my_surfaces” add surface 1 to 3

surface 2 name "BackSurface"
surface 3 name "BottomSurface"
surface 1 name "FrontSurface"
surface 4 name "LeftSurface"
surface 5 name "RightSurface"
surface 6 name "TopSurface"
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual53

CHAPTER 3: Environment
Table 3-8: ‘List Model’ or ‘List Totals’ Example

CUBIT> list model

Model Entity Totals:
 Geometric Entities:
 2 groups
 1 bodies
 1 volumes
 6 surfaces
 12 curves
 8 vertices

 Mesh Entities:
 6000 hexes
 0 pyramids
 0 tets
 7876 faces
 0 tris
 9854 edges
 7161 nodes

 Special Entities:
 1 element blocks
 1 sideSets
 1 nodesets

Table 3-9: ‘List Names’ Example

CUBIT> list names surface
______Name______ Type________Id
 BackSurface Surface 2
 BottomSurface Surface 3
 FrontSurface Surface 1
 LeftSurface Surface 4
 RightSurface Surface 5
 TopSurface Surface 6

Table 3-10: ‘List Surface [range] Ids’ Examples

CUBIT> list surface ids
The 6 surface ids are 1 to 6.

CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.
54 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment
Table 3-11: Using ‘List’ for Querying Connectivity.

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.

CUBIT> group “v2_surfs” equals surface in vertex 2
CUBIT> list v2_surfs
Group Entity ’v2_surfs’ (Id = 3)
It owns 3 entities: 3 surfaces.

Owned Entities: Mesh Scheme Interval:
______Name______ Type________Id +is meshed Count Size

FrontSurface Surface 1 map+ 1 H 0.1
TopSurface Surface 6 map+ 1 H 0.1

RightSurface Surface 5 map+ 1 H 0.1

Table 3-12: ‘List Group Mesh Detail’ Example

CUBIT> list my_surfaces mesh detail
Group Entity ’my_surfaces’ (Id = 2)
It owns 3 entities: 3 surfaces.

 Owned Entities: Mesh Scheme Interval: Edge
 ______Name______ Type________Id +is meshed Count Size Length
 FrontSurface Surface 1 map+ 1 H 0.1
 BackSurface Surface 2 map+ 1 H 0.1
 BottomSurface Surface 3 map+ 1 H 0.1

_______________Mesh_Information___________
Element_Type Interior Boundary Total
 Face 700 0 700
 Edge 1300 180 1480
 Node 603 178 781

Note for groups
’interior’ elements are inside one of the entities explicitly in the group and
’boundary’ elements are on a subentity that is not explicitly in the group.

Mesh id ranges follow.
 The 700 interior face ids are 1 to 700.
 The 1300 interior edge ids are 61 to 430, 491 to 860, 921 to 1480.
 The 180 boundary edge ids are 1 to 60, 431 to 490, 861 to 920.
 The 1480 total edge ids are 1 to 1480.
 The 603 interior node ids are 61 to 231, 292 to 462, 521 to 781.
 The 178 boundary node ids are 1 to 60, 232 to 291, 463 to 520.
 The 781 total node ids are 1 to 781.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual55

CHAPTER 3: Environment
Table 3-13: ‘List Surface Geometry’ Example

CUBIT> list surface 1 geometry

Surface Entity ’FrontSurface’ (Id = 1)

 Meshed: Yes

 Mesh Scheme: map (default)

 Smooth Scheme: winslow fixed

 Non-periodic

 Interval Count: 1

 Interval Size: 0.100000

 An odd loop: No (Surface 1)

 Block Id: 0

 Total number of curves: 4

 Mesh Scheme Arc Interval: Edge Vertex Type

______Name_____ Id +is meshed Length Count Size Length Start_T End_T

 Curve 1 1 equal+ 2 20 H 0.1 0.1 1 2

 Curve 2 2 equal+ 1 10 H 0.1 0.1 2 3

 Curve 3 3 equal+ 2 20 H 0.1 0.1 3 4

 Curve 4 4 equal+ 1 10 H 0.1 0.1 4 1

 In Volume 1.

 Contained in NodeSet 1, Group 2

 Bounding Box: x = -0.5 to 0.5 (range 1)

 y = -1 to 1 (range 2)

 z = 1.5 to 1.5 (range 0)

 Merge Setting = On

 Surface Area: 2.000000

 Surface Normal: xyz = 0.000000 0.000000 1.000000

 At centroid: xyz = 0.000000 0.000000 1.500000

Table 3-14: ‘List Curve’ Example

CUBIT> list curve 1 to 8 by 2

 Mesh Scheme Arc Interval: Edge Vertex Type

______Name_____ Id +is meshed Length Count Size Length Start_T End_T

 Curve 1 1 equal+ 2 20 H 0.1 0.1 1 2

 In FrontSurface, TopSurface.

 Curve 3 3 equal+ 2 20 H 0.1 0.1 3 4

 In FrontSurface, LeftSurface.

 Curve 5 5 equal+ 2 20 H 0.1 0.1 5 6

 In BackSurface, TopSurface.

 Curve 7 7 equal+ 2 20 H 0.1 0.1 7 8

 In BackSurface, LeftSurface.
56 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 3: Environment
Table 3-15: ‘List <entities> x’ Example.

CUBIT> list surface in volume 1 x

Entities sorted by geometric center x-coordinate:

 ______Name______ Type________Id x_Coordinate

 LeftSurface Surface 4 -0.5

 RightSurface Surface 5 0

 BackSurface Surface 2 0

 FrontSurface Surface 1 0

 BottomSurface Surface 3 0

 TopSurface Surface 6 0.5

Table 3-16: ‘List Hex’ Examples

CUBIT> list hex 5701

 Hex 5701 -- Exodus ID = -1

 Owned by Volume 1 (Volume 1)

 Contains Faces: 6084, 6979, 7065, 7066, 11, 1901

 Contains Edges: 8200, 82, 8206, 8204, 3783, 3841, 3842, 11, 9043, 79, 9127, 81

 Contains Nodes: 70, 6872, 6901, 71, 12, 1913, 1942, 13

CUBIT> comment ‘find hexes containing both node 70 and 71’

CUBIT> list hex in node 70 and hex in node 71 ids

 The 2 entity ids are 5101, 5701.

Table 3-17: ‘List Block’ Example

CUBIT> list block

The 1 block id is 1.

CUBIT> list block 1

 Block 1 contains 6000 unexported 3D element(s) of type HEX8.

 Owned Entities:

 ______Name______ Type________Id Mesh_Elements

 Volume 1 Volume 1 6000

CUBIT> export genesis ‘f.gen’

...

CUBIT> list block 1

Block 1 contains 6000 exported 3D element(s) of type HEX8.

...

Table 3-18: ‘List SideSet’ Example

CUBIT> list sideset 1

SideSet 1 contains 200 exported element sides.

 Owned Entities:

 ______Name______ Type________Id Mesh_Elements

 BackSurface Surface 2 200
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual57

CHAPTER 3: Environment

d or

ype a
of
▼ Obtaining Help
CUBIT can give help on command syntax in two ways. For help on a particular comman
keyword, the user can simply typehelp <keyword> . Or, if the user has typed part of a
command and is uncertain of the syntax of the remainder of the command, they can t
question mark? and help will be printed for all the keywords currently entered. The results
this type of command is shown in Table 3-21.

Table 3-19: ‘List NodeSet’ Example

CUBIT> list nodeset 1

NodeSet 1: contains 231 nodes.

 Owned Entities:

 ______Name______ Type________Id Mesh_Elements

 FrontSurface Surface 1 231

Table 3-20: Sample Output from ‘List Settings’ Command

CUBIT> list settings

Debug Flag Settings (flag number, setting, output to, description):

 1 OFF terminal Debug Graphics toggle for some debug options.

 2 OFF terminal Whisker weaving information

 3 OFF terminal Timing information for 3D Meshing routines.

... (many lines deleted) ...
88 OFF terminal General virtual geometry stuff

89 OFF terminal Tet meshing warning and debug messages

echo = On

info = On

journal = On, journal file = ’cubit13.jou’

warning = On

logging = Off

recording = Off

keep invalid mesh = Off

default names = Off

name replacement character = ’_’, suffix character = ’@’

default blocks = Volumes

Matching Intervals is fast, TRUE; multiple curves will be fixed per interation.

Note in rare cases ’slow’, FALSE, may produce better meshes.

Match Intervals rounding is FALSE; intervals will be rounded towards the user-

specified intervals.

Table 3-21: Help on Volume & Label

CUBIT> volume 3 label fish ?

Help for words: volume & label

Label Volume [on | off | name [only|id] | id | interval | size |

scheme | merge | firmness]
58 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

at the
n of

etry
s to
fining
ks.

f the
ing
Chapter 4: Geometry
▼ Introduction…59

▼ CUBIT Geometry Model Definitions…60

▼ Automatic Detail Suppression…60

▼ Geometry Creation…62

▼ Geometry Transforms…69

▼ Geometry Booleans…71

▼ Geometry Decomposition…73

▼ Virtual Geometry:…75

▼ Automatic Geometry Decomposition…79

▼ Geometry Merging…80

▼ Geometry Groups…82

▼ Geometry Attributes…82

▼ Exporting Geometry…85

▼ New Geometry Commands…85

▼ Model Import/Export…98

▼ Groups…100

▼ Introduction
The geometry model in CUBIT serves as the basis for mesh generation, as it describes
resolution of interest to the analysis. The geometric model is also used for the definitio
boundary conditions. The ACIS solid modeling engine is used by CUBIT for solid geom
operations; CUBIT also builds a representation on top of the ACIS model, which it use
define non-manifold topology. The CUBIT representation is also used as a means for de
virtual geometry, which is used for feature removal and other useful meshing-related tas

This chapter begins with definitions of geometric model used in CUBIT and the structure o
nonmanifold geometry represented by CUBIT. This is followed by sections describ
geometry import, creation, modification and export.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual59

CHAPTER 4: Geometry

is
nual,
l. The

del;

may
ology

f free
y one
ne or

ces
ient

metry

ether
ypical
on that
. This

han
to exist
odel,

this
n in
▼ CUBIT Geometry Model Definitions
Before describing the functionality in CUBIT for viewing and modifying solid geometry, it
useful to give a precise definition of terms used to describe geometry in CUBIT. In this ma
the terms topology and geometry are both used to describe parts of the geometric mode
definitions of these terms are:

Topology: the manner in which geometric entities are connected within a solid mo
topological entities in CUBIT include vertices, curves, surfaces, volumes and bodies.

Geometry: the definition of where a topological entity lies in space. For example, a curve
be represented by a straight line, a quadratic curve, or a b-spline. Thus, an element of top
(vertex, curve, etc.) can have one of several different geometric representations.

Topology
Within CUBIT, the topological entities consist ofvertices, curves, surfaces, volumes,and
bodies.Each topological entity has a corresponding dimension, representing the number o
parameters required to define that piece of topology. Each topological entity is bounded b
or more topological entities of lower dimension. For example, a surface is bounded by o
more curves, each of which is bounded by one or two vertices.

A CUBIT Body is defined as a collection of other pieces of topology, including curves, surfa
and volumes. While a Body is not required for a complete topological model, it is a conven
mechanism for grouping volumes. Bodies are also used as the basis for solid geo
operations in CUBIT.

Non-Manifold Topology
In many applications, the geometry consists of an assembly of individual parts, which tog
represent a functioning component. These parts often have mating surfaces, and for t
analyses these surfaces should be joined into a single surface. This results in a mesh
surface which is shared by the volume meshes on either side of the shared surface
configuration of geometry is loosely referred to as non-manifold topology1.

▼ Automatic Detail Suppression

Geometry models often have small features which can be difficult to

1. The definition of non-manifold topology used in the field of Topology is much broader t
the definition used here, since it allows additional cases such as dangling faces and edges
in the model. Although dangling faces and edges are allowed in the CUBIT geometry m
their use is not common. Unless otherwise stated, the use of the term non-manifold in
manual will refer to the definition given in the text rather than the complete definition know
the field of Topology.
60 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry
resolve in a mesh. In fact, these features are sometimes too small to

see, and are revealed only when the user attempts to mesh the

geometry. Automatic detail suppression can be used to remove those

features from the meshing model (since virtual geometry operations are

used to remove the features, they do not get removed from the actual

CAD model).

Small details are identified using the command:

 Detail [<ref entity list>] [identify [dimension <dim> [only]]]

After identifying small details, these details can be drawn or removed

from the model using the commands:

 Detail [<ref entity list>] draw [dimension <dim> [only]]

 Detail [<ref entity list>] remove [dimension <dim> [only]]

In the commands above, the dimension option is used to identify the

maximum dimension of entities examined for small detail identification

(<dim> is 3, 2, 1 for volumes, surface, and curves, respectively). If

the only identifier is specified, only entities of the specified

dimension are examined, otherwise that dimension and all lower

dimensions are examined.

In some cases, details are identified which the user would like to

retain in the model; likewise, the algorithm used to identify small

details sometimes misses small details the user would like removed

from the model. To include or exclude geometric entities *from the

list of small details to be removed*, the following command is used:

 Detail <ref entity list> [include | exclude]

The algorithm used to identify small details relies on the definition

of two quantities, referred to as MEASURSE and SMALL_FRACTION.

MEASURE is a measure of the characteristic size of an entity. For

geometric curves, this is simply the curve’s arc length. For

surfaces, MEASURE is computed as the minimum of two quantities, the

smallest arc length of curves bounding the surface and the hydraulic
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual61

CHAPTER 4: Geometry

BIT
hich
n be
it

thods
ds
diameter of the surface. (footnote: The hydraulic diameter of a surface

is computed as 4.0*A/P, where A is the surface area and P is the

summed arc lengths of all bounding curves. For circles,

the hydraulic diameter is the circle diameter; for squares, it is the

length of the bounding curves. Similarly, for volumes, the hydraulic

diameter is computed as 6.0*V/A, which evaluates to the diameter and

bounding curve length for perfect spheres and cubes, respectively.)

This MEASURE is compared to the user-assigned mesh interval size for

that entity; if that ratio is below SMALL_FRACTION, the entity is

identified as a small detail. By default, SMALL_FRACTION is set to

1/3.

When removing small curves and surfaces, it is often necessary to

composite surfaces together. When done poorly, this results in large

variations of surface normal in the region local to the small

feature. For this reason, surfaces are not composited unless the dot

product of their normal vectors in the neighborhood of the shared

curve is greater than COMPATIBLE_FRACTION. By default, this quantity

is set to 0.866; this corresponds to an angle between the two surfaces

of 180 degrees plus or minus 30 degrees.

In addition to identifying geometrically small entities, the automatic

detail suppression algorithm also identifies for removal vertices with

valence two. These vertices sometimes appear after performing

decomposition on ACIS-based models. Vertices bounding a single curve

twice (i.e. the vertex bounding a circular curve) are not removed,

however.

▼ Geometry Creation
There are three primary ways of creating geometry for meshing in CUBIT. First, CU
provides many geometry primitives for creating common shapes (spheres, bricks, etc.) w
can then be modified and combined to build complex models. Secondly, geometry ca
imported into CUBIT from an ACIS “.sat” file. Finally, geometry can be defined by building
from the “bottom up”, creating vertices, then curves from those vertices, etc. The three me
for creating geometry in CUBIT will be descibed in detail in this section, followed by metho
for modifying that geometry.
62 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

ree-
roviding

BIT
ws a

ate it
ptions

.

X

Geometric Primitives
The geometric primitives supported within CUBIT are pre-defined templates of th
dimensional geometric shapes. Users can create specific instances of these shapes by p
values to the parameters associated with the chosen primitive. Primitives available in CU
include the brick, cylinder, torus, prism, frustum, pyramid, and sphere. Figure 4-1 sho

sample of the available primitives. Each primitive, along with the command used to gener
and the parameters associated with it, are described next. For some primitives, several o
can be used to generate them, and are described as well.

General Notes

• Primitives are created and given an ID equal to one plus the current highest body ID in the
model.

• Primitive solids are created with their centroid at the origin or the world coordinate system

• For primitives with a Height or Z parameter, the axis going through these primitives will be
aligned with the Z axis.

• For primitives with a Major Radius and a Minor Radius, the Major Radius will be along the
axis, the Minor Radius along the Y axis.

• For primitives with a Top Radius, this radius will be that along the X axis; the Y axis radius
will be computed using the Major, Minor and Top Radii given.

Brick

The brick is a rectangular parallelepiped.

• Command:

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z} <height>]
[Bounding Box entity_type <id_range>]

Figure 4-1: Geometry primitives available in CUBIT.

Pyramid

Frustum

Torus

Cylinder

Brick

Prism

Sphere

(Cone)
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual63

CHAPTER 4: Geometry

the

or
ns.

e tube.

d of a

.

of a

lated
• Notes:

• A cubical brick is created by specifying only the width or x dimension.

• A brick can be specified to occupy the bounding box of one or more entities, specified on
command line.

• If a bounding box specification is used in conjuction with any of the other paramters (X, Y
Z), the parameters specified override the bounding box results for that or those dimensio

Cylinder

The cylinder is a constant radius tube with right circular ends.

• Commands:

[Create] Cylinder [height | z] <z-height> radius <x/y-radius>

• Notes:

• A cylinder may also be created using thefrustum command with all radii set to the same
value.

Prism

The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of th

• Commands:

[create] prism [height | z] <z-height> sides <nsides> radius <radius>

[create] prism [height | z] <z-height> sides <nsides> major [radius] <x-
radius> minor [radius] <y-radius>

• Notes:

• The radius defines the circumradius of the n-sided polygon on the end caps.

• If a major and minor radius are used, the end caps are bounded by a circum-ellipse instea
circumcircle.

• The number of sides of a prism must be greater than or equal to three.

• A prism may also be created using thepyramid command with all radii set to the same value

Frustum

A frustum is a general elliptical right frustum, which can also be thought of as a portion
right elliptical cone.

• Commands:

[create] frustum [height | z] <z-height> major [radius] <x-radius>
[minor [radius] <y-radius> top <top-x-radius>]

• Notes:

• If used, Major Radius defines the x-radius and Minor Radius the y-radius.

• If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is calcu
based on the ratio of the major and minor radii.

Pyramid
64 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

or an

e
py

the

ia

metry
tly to
ethods

v, or
A pyramid is a general n-sided prism.

• Command:

[create] pyramid [height | z] <z-height> sides <nsides> [major [radius] <x-
radius> minor [radius] <y-radius>] [top <top-x-radius>]

Sphere

The sphere command generates a simple sphere, or, optionally, a portion of a sphere
annular sphere.

• Commands:

[create] sphere radius <radius> [xpositive] [ypositive] [zpositive] [delete]
[inner [radius] <radius>

• Notes:

• If Xpositive, Ypositive, and/or Zpositive are used, a sphere which occupies that side of th
coordinate plane only is generated, or, if the delete keyword is used, the sphere will occu
the other side of the coordinate plane(s) specified. These options are used to generate
hemisphere, quarter sphere or a sphere octant (eighth sphere).

• If the inner radius is specified, a hollow sphere will be created with a void whose radius is
specified inner radius.

Torus

The torus command generates a simple torus.

• Command:

[create] torus major [radius] <major-radius> minor [radius] <minor-radius>

• Notes:

• Minor Radius is the radius of the cross-section of the torus;Major Radius is the radius of
the spine of the torus.

• The minor radius must be less than the major radius.

Importing Geometry
CUBIT can import geometry in the ACIS “sat” file format. For compatability with Sand
legacy applications, FASTQ input decks can also be used to create geometry.

There are many ways to get geometry into the ACIS format, depending on where that geo
is created. If the geometry is constructed inside CUBIT, the model can be exported direc
an ACIS file (see). If the model has been constructed in Pro/Engineer, there are several m
for translating Pro/E files to the ACIS format1. ACIS files can also be exported directly from
several commercial CAD packages, including SolidWorksTM, AutoCAD, and HP PE/
SolidDesigner.

Importing ACIS Models

1. For information about translating Pro/Engineer files into ACIS format, contact the CUBIT group at cubit-dev@sandia.go

see the web page http://sass2248.jal.sandia.gov/... on the Sandia Internal Restricted Network.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual65

CHAPTER 4: Geometry

ting
uble
input

ted

pping
me
ndled
o be
‘)’.
ral in

t to
orted

ity to
node
esh)

from
ry can
so be
ng
iable

apter

is is
urves
rfaces
lume”
order
s and
The command used to read an ACIS file is:

Import Acis ‘<acis_sat_filename>’

ACIS files can also be imported using the “-solid” command-line option (see “Execu
CUBIT” on page 4 for details.) Note that the filename must be enclosed in single or do
quotes. This command will create as many bodies within CUBIT as there are bodies in the
file.

Importing FASTQ Models

Support is available for reading a FASTQ file directly into CUBIT. FASTQ files are impor
into CUBIT using the command:

Import Fastq ’<fastq_filename>’

Note that the filename must be enclosed in single or double quotes.

All FASTQ commands are fully supported except for theBody command (which is ignored, if
present, as it is unnecessary), the “corn” (corner) line type, and some of the specialized ma
primitive Scheme commands. Standard mapping, paving, and triangle primitive sche
commands are handled. The pentagon, semicircle, and transition primitives are not ha
directly, but are meshed using the paving scheme. The FASTQ input file may have t
modified if theScheme commands use any non-alphabetic characters such as ‘+’, ‘(‘, or
Circular lines with non-constant radius are generated as a logarithmic decrement spi
FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swep
generate three dimensional geometry. CUBIT supports sweeping options to convert imp
FASTQ geometries into volumetric regions.

Importing ExodusII Files

ExodusII finite element data files can be imported under certain conditions. The capabil
generate new geometry from deformed mesh is available for 2D ExodusII files (4, 8, or 9
QUAD or SHELL element types) that do not have enclosed voids (holes surrounded by m
and which were originally generated with CUBIT and exported to ExodusII with theNodeset
Associativity option set to on. TheNodeset Associativity command records the topology
of the geometry into special nodesets which allow CUBIT to reconstruct a new solid model
the mesh even after it has been deformed. The new solid model of the deformed geomet
be remeshed with standard techniques or meshed with a sizing function that can al
imported into CUBIT from the same ExodusII file. CUBIT's implementation of the pavi
algorithm can generate a mesh following a sizing function to capture a gradient of any var
(element or nodal) present in the ExodusII file.

For more details on importing mesh for geometry, including command syntax, see ... (ch
5).

Bottom-Up Geometry Creation
CUBIT supports the ability to create geometry from a collection of lower order entities. Th
accomplished by first creating vertices, connecting vertices with curves and connecting c
into surfaces. Currently bodies or volumes may not be constructed by stitching a set of su
together, however surfaces may be swept or rotated to create bodies or volumes (see “Vo
on page 68). Existing geometry may be combined with new geometry to create higher
entities. For example, a new surface can be created using a combination of new curve
66 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

metry

ifying
hich

cond

d the
There

ce. If
ace’s

of a

urve

ed to

ding
. The
ave a
pose

out of
curves already extant in the model. Commands and details for creating each type of geo
entity are given below.

Vertex

The commands available for creating new vertices directly in CUBIT are:

Create Vertex <x><y><z> [on [Curve | Surface] <id>]

Create Vertex <fraction> from Vertex <id> on Curve <id>

A vertex can be created which lies on a curve or surface in the geometric model by spec
the curve or surface id; the position of the vertex will be the point on the specified entity w
is closest to the position specified on the command.

A vertex can be positioned a certain fraction of the arc length along a curve using the se
form of the command.

Curve

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) an
geometry (shape) of the curve (along with any parameters necessary for that geometry).
are three forms of this command:

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id>
[On Surface <surface_id>]

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [Vertex] <vertex_id>
[Parabolic]

Create Curve from Curve <curve_id>

The first form of the command creates a straight line or a line lying on the specified surfa
a surface is used, the curve will lie on that surface but will not be associated with the surf
topology.

A parabolic curve is created by specifying a third vertex, which completes the definition
parabolic arc which goes through the three vertices.

The third form of the command actually copies the geometric definition in the specified c
to the newly created curve. The new curve is free floating.

In all cases, the specified vertices are not used directly but rather their positions are us
create new vertices.

Surface

Surfaces are created in CUBIT by fitting an analytic or spline surface over a set of boun
curves. The curves must form a closed loop and only one loop of curves may be supplied
result is a “sheet body” or a body that has zero measurable volume (it does however h
volume entity). Booleans and special webcutting commands may be used with to decom
this body or to use it for decomposing other bodies. Booleans can be used to cut holes
these surfaces.

There are three forms of the create surface command:

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>…

Create Surface from Surface <surface_id>

Create Surface extended from Surface <surface_id>
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual67

CHAPTER 4: Geometry

ding

urface.
user

. The
rrent
iven

nto a
es, is

ow. In
es
ngle

ional
to the
fault
lies a
The first form of this command produces an analytic or spline surface fit to cover the boun
curves.

The second form creates a surface using the same geometric description of the specified s
The new surface will be a stand-alone sheet body that is geometrically identical to the
supplied surface.

The third form of the command creates a surface that is extended from a given surface
specified surface’s geometry is examined and extended out “infinitely” relative to the cu
model in CUBIT (i.e. extended to just beyond the bounding box of the entire model). The g
surfaces are extended as shown in Table 4-1.

Volume

Currently, CUBIT can create volumes from surfaces only by sweeping a single surface i
3D solid. Sweeping of planar surfaces, belonging either to two- or three-dimensional bodi
allowed - non-planar faces are not supported at this time.

There are two forms of the sweep command; the syntax and details for each are given bel
both forms, the optionaldraft_angle parameter specifies the angle at which the lateral fac
of the swept solid will be inclined to the sweep direction. It can also be described as the a
at which the profile expands or contracts as it is swept. The default value is 0.0. The opt
draft_type parameter is an ACIS-related parameter and specifies what should be done
corners of the swept solid when a non-zero draft angle is specified. A value of 0 is the de
value and implies an extended treatment of the corners. A value of 1 is also valid and imp
rounded (blended) treatment of the corners.

sweep surface {<surface_id_range> | all} vector <x_vector y_vector
z_vector> [distance <distance_value>] [draft_angle <degrees>]
[draft_type <0 | 1>]

Table 4-1: Surface Extension Results

Given Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Taurus

Conical, cone, cylinder… Shell of outside conic axially aligned
with given conic of infinite height
relative to model

Spline Surface is extended to extents of the
spline definition. This may not be any
further than the surface itself, so caution
should be used here.
68 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

of the
to the

axis

ted,

even
CIS,

ove,
ations
dies.

mand
rface
ction

ition.
Sweeps a surface a specified distance along a specified vector. Specifying the distance
sweep is optional; if this parameter is not provided, the face is swept a distance equal
length of the specified vector.

sweep surface {<surface_id_range> | all} axis {<xpoint ypoint zpoint xvector
yvector zvector> | xaxis | yaxis | zaxis} angle <degrees> [steps
<number_of_sweep_steps>] [draft_angle <degrees>] [draft_type <0 | 1>]

Sweeps a surface about a specified vector or axis through a specified angle. Theaxis of
revolution is specified using either a starting point and a vector, or by a coordinate axis. This

must lie in the plane of the surfaces being swept. Thesteps parameter defaults to a value of 0
which creates a circular sweep path. If a positive, non-zero value (say,n) is specified, then the
sweep path consists of a series ofn linear segments, each subtending an angle of[(sweep_angle
) / (steps-1)] at the axis of revolution.

Note: Specifying multiple surfaces that belong to the same body will not work as expec
as ACIS performs the sweep operationin place. Hence, if a range of surfaces is
provided, they ought to each belong to different bodies.

The sweep operations have been designed to produce valid solids of positive volume,
though the underlying solid modeling kernel library that actually executes the operation, A
allows the generation of solids of negative volume (i.e., voids) using a sweep.

▼ Geometry Transforms
Bodies can be modified in CUBIT using transform operations, which include align, copy, m
reflect, restore, rotate, and scale. With the exception of the copy operation, transform oper
in CUBIT donot create new topology, rather they modify the geometry of the specified bo

Align

The align command is a combination of the rotate and move commands. The align com
will align the surface of a given body with any other surface in the model, such that the su
centroids are coincident and the normals are pointing either in the same or opposite dire
(depending on their initial alignment.) The syntax of this command is:

Align Body <body_id> Surface <surface_id> with Surface <body_id>

This transformation is useful for aligning surfaces in preparation for geometry decompos

Copy
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual69

CHAPTER 4: Geometry

ody.
ated or

ted in
to

tails

 are:

fset.

other

y be
oves

ng an
e the

ut its
The copy command copies an existing body to a new body without modifying the existing b
A copy can be made of several bodies at once, and the resulting new bodies can be transl
rotated at the same time. The commands for copying bodies are:

Body <range> copy [move <x-offset> <y-offset> <z-offset>]

Body <range> copy [reflect {x | y | z}]

Body <range> copy [reflect <x-comp> <y-comp> <z-comp>]

Body <range> copy [rotate <angle> about {x | y | z}]

Body <range> copy [rotate <angle> about <x-comp> <y-comp> <z-comp>]

Body <range> copy [scale <scale-factor>]

If the copy command is used to generate new bodies, a copy of the original mesh genera
the original body can also be copied directly into the new body. This is currently limited
copies that do not interact with adjacent geometry through non-manifold topology. For de
on mesh copies, see “Mesh Importing and Duplicating” on page 167.

Move

Themove command moves a body by a specified offset. The commands to move bodies

Body <id_range> [Copy] Move <dx> <dy> <dz>

Body <id_range> [Copy] Move {x|y|z} <distance>

Move {Body|Group} <id_range> Normal To Surface <id> Distance <val>

Move {Body|Group} <id_range> XYZ <x_val> <y_val> <z_val>

If the copy option is specified, a copy is made and the copy is moved by the specified of

It is also possible to move bodies to locations specified either absolutely or relative to
geometry entities in the model:

Move {entity} <id_range> location entity <id> [except [x] [y] [z]]

Move {entity} <id_range> location [x <val>] [y <val>] [z <val>] [except [x] [y]
[z]]

Here entity is {vertex|curve|surface|volume|body}, and any combination of entities ma
specified (in this case, the body containing the specified entity is moved). This command m
the center of the entities to the specified location. (Note that bodies are integral, so movi
entity also moves all other entities that are in the same body.) “Except” is used to preserv
x, y, or z plane in which the center of the entity lies.

Scale

The scale command resizes the body by a constant scale. The body will be scaled abo
centroid. The command to scale bodies is:

body <range> [copy] scale <scale>

If the copy option is specified, a copy is made and scaled the specified amount.

Rotate
70 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

If the
s to

flect
the

body.

olids.
tract,
new

aces
place
f an
ry to

ter
Therotate command rotates a body about a given axis without adding any new geometry.
Angle or anyComponents are not specified they are defaulted to be zero. The command
rotate a body or bodies are:

body <range> [copy] rotate <angle> about {x | y | z}

body <range> [copy] rotate <angle> about <x-comp> <y-comp> <z-comp>

Rotate {Body|Group} <id_range> Angle <val> Axis {X|Y|Z|Normal of Surface
<id>| Vertex <id_1> Vertex <id_2>}

If the copy option is specified, a copy is made and rotated the specified amount.

Reflect

Thereflect command mirrors the body about a plane normal to the vector supplied. The re
command willdestroythe existing body and replace it with the new reflected body, unless
copy option is used.

body <range> [copy] reflect <x-comp> <y-comp> <z-comp>

body <range> [copy] reflect {x | y | z}

Restore

The restore command removes all previous geometry transformations from the specified
The command to restore bodies is:

body <range> restore

▼ Geometry Booleans
Boolean operations are ones that modify the geometry and/or the topology of existing s
Boolean operators supported in CUBIT include imprint, intersect, separate, section, sub
and union. These operations usually replace the original bodies input to the boolean with
ones.

Imprint

To produce a non-manifold geometry model from a manifold geometry, coincident surf
must be merged together (see “Geometry Merging” on page 80); this merge can only take
if the surfaces to be merged have like topology and geometry. While various parts o
assembly will typically have surfaces which coincide geometrically, an imprint is necessa
make the surfaces have like topology.

The commands used to imprint bodies together are:

Imprint <body1_id> with <body2_id>

Imprint [Body] All

An Imprint All will imprint all bodies in the model pairwise; bounding boxes are used to fil
out imprint calls for bodies which clearly don’t intersect.

Intersect
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual71

CHAPTER 4: Geometry

e two
ill be

side

offset
isting
ults in

ent to

odies

action
from
given

s are

o not
Theintersect command generates a new body composed of the space that is shared by th
bodies being intersected. Both of the original bodies will be deleted and the new body w
given the next highest body ID available. The command is:

Intersect <body1_id> with <body2_id> [keep]

Thekeep option results in the original bodies used in the intersect being kept.

Section

This command will cut a body or group of bodies with a plane, keeping geometry on one
of the plane and discarding the rest. The syntax for this command is:

Section {body|group} <id_range> {xplane|yplane|zplane} [offset <value>]
[reverse] [keep]

Section {body|group} <id_range> surface <id> [reverse] [keep]

In the first form, the specified coordinate plane is used to cut the specified bodies. The
option is used to specify an offset from the coordinate plane. In the second form, an ex
(planar) surface is used to section the model. In either case, the reverse keyword res
discarding the positive side of the specified plane or surface instead of the other side. Thekeep
option results in keeping both sides; the section command used with this option is equival
webcutting with a plane.

Separate

The separate command is used to separate a body with multiple volumes into a multiple b
with single volumes. The command is:

Separate Body {id_range|all}

Subtract

The subtract operation subtracts one body from another set of bodies. The order of subtr
is significant - the body or bodies specified before the From keyword is/are subtracted
bodies specified after From. Both of the original bodies are deleted and the new body is
the next highest body ID available, unless thekeep keyword is given. The command is:

Subtract <body1_id> from [Body] <body_id_range> [keep]

Unite

The unite operation combines two or more bodies into a single body. The original bodie
deleted and the new body is given the next highest body ID available, unless thekeepoption is
used. The commands are:

Unite <body1_id> with <body2_id> [keep]

Unite Body {<range> | all} [keep]

The second form of the command unites multiple bodies in a single operation. If theall option
is used, all bodies in the model are united into a single body. If the bodies that are united d
overlap or touch, the two bodies are combined into a single body with multiple volumes.
72 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

hree-
t yet
basis

T has

s the
he
aces
ies.

tting.
more

d can

ntified

e the

nder
cified

ugh

lanar,
▼ Geometry Decomposition
Geometry decomposition is often required to generate an all-hexahedral mesh for t
dimensional solids, as fully automatic all-hex mesh generation of arbitrary solids is no
possible in CUBIT. While geometry booleans can be used for decomposition (and are the
of the underlying implementation of advanced decomposition tools described here), CUBI
a webcut capability specially tuned for decomposition.

Web Cutting
The term “web cutting” refers to the act of cutting an existing body or bodies, referred to a
“blank”, into two or more pieces through the use of some form of cutting tool, or “tool”. T
two primary types of cutting tools available in CUBIT are surfaces (either pre-existing surf
in the model or infinite or semi-infinite surfaces defined for webcutting), or pre-existing bod

The various forms of the webcut command can be classified by the type of tool used for cu
These forms are described below, starting with the simplest type of tool and progressing to
complex types.

Webcut Using Planar or Cylindrical Surface

The commands used to webcut with a planar surface in CUBIT are:

webcut {blank} plane {xplane | yplane | zplane} [offset <value>]

webcut {blank} plane surface <surface_id>

webcut {blank} plane vertex <id> vertex <id> vertex <id>

webcut {blank} cylinder radius <val.> axis {x|y|z|normal of surface <id>|
vertex <id_1> vertex <id_2>| <x_val> <y_val> <z_val>>} [center <x_val>
<y_val> <z_val>]

[NOIMPRINT|imprint][NOMERGE|merge] [group_results]

In the command’s simplest form, a coordinate plane can be used to cut the model, an
optionally be offset a positive or negative distance from its position at the origin.

An existing planar surface can also be used to cut the model; in this case, the surface is ide
by its ID as the cutting tool.

Finally, any arbitrary planar surface can be used by specifying three vertices which defin
plane.

A semi-infinite cylindrical surface can be used by specifying the cylinder radius, andthe cyli
axis. The axis is specified as a line corresponding to a coordinate axis, the normal to a spe
surface, two arbitrary points, or an arbitrary point and the origin. The “center” point thro
which the cylinder axis passes can also be specified.

Webcut with Arbitrary Surface

An arbitrary “sheet” surface can also be used to webcut a body. This sheet need not be p
and can be bounded or infinite. The following commands are used:

webcut {blank} with sheet {body|surface} <id> [webcut_options]

webcut {blank} with sheet extended from surface <id> [webcut_options]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual73

CHAPTER 4: Geometry

rmed
letely
lso be
ated

nded in
rfaces

to do

two

to a

ot
after

ng
ut.

hex
itial
been
utting

re
are

is
ame

f the
on
been

nt

s,
ry for
In its first form, the command uses a sheet body, either one that is pre-existing or one fo
from a specified surface. Note that in this latter case the (bounded) surface should comp
cut the body into two pieces. Sheet bodies can be formed from a single surface, but can a
the combination of many surfaces; this form of webcut can be used with quite complic
cutting surfaces.

Extended sheet surfaces can also be used; in this case, the specified surface will be exte
all directions possible. Note that some spline surfaces are limited in extent, and so these su
may or may not completely cut the blank.

Webcut Using Tool Body

Any existing body in the geometric model can be used to cut other bodies; the command
this is:

webcut {blank} tool [body] <id> [webcut_options]

This simply uses the specified tool body in a set of boolean operations to split the blank into
or more pieces.

Webcut Options

The following options can be used with all webcut commands:

Group_results: The various pieces resulting from the previous command are placed in
group named ‘webcut_group’.

[Imprint | Noimprint]: In its default implementation, webcutting results in the pieces n
being imprinted on one another; this option forces the code to imprint the pieces
webcutting.

[Merge | Nomerge]: By default, the pieces resulting from an imprint are manifold; specifyi
this option results in a merge check for all surfaces in the pieces resulting from the webc

General Notes

The primary purpose of web cutting is to make an existing model meshable with the
meshing algorithms available in CUBIT. While web cutting can also be used to build the in
geometric model, the implementation and command interface to web cutting have
designed to serve its primary purpose. Several important things to remember about webc
are as follows:

• The geometric model should be checked for integrity (using imprinting and merging) befo
starting the decomposition process. This makes the checking process easier, since there
fewer bodies and surfaces to check. Once the model passes that initial integrity check, it
rare that decompositions using webcut will result in a model that does not also pass the s
checks.

• The use of the Imprint option can in cases save execution time, since it limits the scope o
imprint operations and thereby works faster. The alternative is performing and Imprint All
the pieces of the model after all decompositions have been completed; this operation has
made much faster in more current releases of CUBIT, but will still take a noticeable amou
of time for complicated models.

• While the Webcut commands make it very simple to cut your model into very many piece
we recommend that the user restrict the decomposition they perform to only that necessa
meshability or for obtaining an acceptable mesh. Having more volumes in the model may
74 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

.

iodic
added

g
inal

Solid
ating

rfaces
mmon
es the
at that

ating

t in a

m the
are
hen
es to
simplify individual volumes, but may not always result in a higher quality mesh; it will
always increase the run time and complexity of the meshing task.

Appendix B contains some examples that demonstrate the use of webcutting operations

Split Periodic
Solids which contain periodic surfaces include cylinders, torii and spheres. Splitting per
surfaces can in some cases simplify meshing, and will result in curves and surfaces being
to the volume. The command used to split periodic surfaces is:

Split Periodic Body {id_range|all}

This command splits all periodic surfaces in a body or bodies.

▼ Virtual Geometry:
Modify topology of the model within Cubit without affecting geometry and without makin
changes to the actual solid model. All Virtual Geometry (VG) operations are reversible (orig
solid model topology can be restored.)

General Notes:

Operations on the solid model cannot be done for bodies containing virtual geometry.
modeling operations (webcutting, imprinting, booleans, etc.) must be done prior to cre
virtual geometry.

Virtual geometry operations cannot be done on meshed geometry.

Compositing:

Combine a set of connected curves into a single composite curve, or a set of connected su
into a single surface. The general purpose is to suppress (remove) the child geometry co
to those entities being composited. For example, compositing a set of curves suppress
vertices common to those curves, thus removing the constraint that a node must be placed
vertex location.

The basic form of the command to create composites is:

 composite create {surface|curve} <id_list>

This command will composite as many surfaces (or curves) as possible, possibly cre
multiple composites. The command to remove a composite is:

composite delete {surface|curve} <id>

Compositing over large C1 discontinuities may confuse meshing algorithms and/or resul
bad mesh.

Composite Curves:

The full command for the creation of composite curves is:

 Composite Create Curve <id_range> [keep vertex <id_list>] [angle <degrees>]

The additional arguments provide two methods to prevent vertices from being removed fro
model (composited over.) The first method, "keep vertex" explicitly specifies vertices which
not to be removed. This option can also be used to control which vertex is kept w
compositing a set of curves results in a closed curve. The ’angle’ option specifies vertic
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual75

CHAPTER 4: Geometry

ro will
sible
angle

e

ding
r) by

on the
angle
can be
sed to
eep’
eep’

sed in

mmed
ate the

ically
the
eler.

When
ted into
d will

d C, all
tween
t be
re is a
osite

tter
rves
keep by the angle between the tangents of the curves at that vertex. A value less than ze
result in no composite curves being created. A value of 180 or greater will result in all pos
composites being created. The default behavior is an empty list of vertices to keep, and an
of 180 degrees.

Composite Surfaces:

The general command for composite surface creation is:

Composite Create Surface <id_range> [angle <degrees>] [nocurves] [keep [angl
<degrees>] [vertex <id_list>]]

The first angle argument (the only one if the ’keep’ keyword is not present, or the one prece
the ’keep’ keyword) prevents curves from being removed from the model (composited ove
specifying the maximum angle between the normals of surfaces adjacent to the curve.

When a composite surface is created, the default behavior is to also composite curves
boundary of the new composite surface. Curves are automatically composited if the
between tangents at the common vertex is less than 15 degrees. The ’nocurves’ option
used to prevent any composite curves from being created. The ’keep’ keyword can be u
change the default choice of which curves to composite. The arguments following the ’k
keyword behave the same as for explicit composite curve creation. The ’nocurves’ and ’k
arguments are mutually exclusive.

Other Composite Surface Notes:

It typically takes longer to mesh a single composite surface than to mesh the surfaces u
the creation of the composite.

Composite surfaces uses an approximation method to evaluate the closes point to a tri
surfaces because it is faster. However, for some highly convoluted surfaces (used to cre
composite), this method may return bad results. The command

 composite closest_pt surface <id> {gme|emulate}

can be used to disable this behavior. The default is to use the ’emulate’ method, as it is typ
much faster. Specifying the ’gme’ option will force the specified composite surface to use
exact calculation of the closest point to a trimmed surface, as provided by the solid mod
However, this is considerably slower in most cases.

The "composite create surface" command is non-deterministic in some circumstances.
three or more adjacent surfaces are to be composited, all the surfaces cannot be composi
a single surface, but different subsets of the surfaces may be composited, the comman
choose arbitrary subsets to composite. As an example, there are three surfaces A, B, an
adjacent to each other. The common curve between A and B is AB, the common curve be
B and C is BC, and the common curve between A and C is AC. If the curve BC canno
removed, either due to the angle specified in the composite command, or because the
fourth surface, D, also using that curve, the command will arbitrarily choose to either comp
A and B or A and C.

Partitioning:

Partitioning provides a method to introduce additional topology into the model, to be
constrain meshing algorithms. This is accomplished by splitting, or partitioning, existing cu
or surfaces.

Partitioning Curves:

There are three forms to the command to partition a curve:
76 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

plit a

n the
here

each
new

assed
re not
ves in
plete

using
e part

o the
d for
eal
tual
del.

other
mand

ing
not
ed to
 partition create curve <id> fraction <f1> [<f2> <f3> ...]

 partition create curve <id> position <x> <y> <z> [position <x2> <y2> <z2> ...]

 partition create curve <id> vertex <id_list>

The first two forms of the command create additional vertices and use those vertices to s
curve. The third form of the command uses existing vertices to split the curve.

Using the ’fraction’ option, vertices are created at the specified fractions along the curve (i
range [0,1]). Subsequently, the curve is split at each vertex, resulting in n+1 new curves, w
n is the number of fraction values specified.

Using the ’position’ option, vertices are created at the closest location along the curve to
of the specified position. Subsequently, the curve is split at each vertex, resulting in n+1
curves, where n is the number of positions specified.

Curves can also be partitioned via the ’virtual’ command discussed below.

Partitioning Surfaces:

 There are two forms of the command to partition a surface:

 partition create surface <id> curve <id_list>

 partition create surface <id> vertex <id1> <id2> [<id3>]

The first form of the command splits the existing surface into several surfaces using the p
list of curves. The end vertices of the curves must be part of the surface. If the vertices a
already part of the surface, they can be made to be part of the surface by partitioning cur
the surface using end vertices of the passed list of curves. Any curves which do not com
loops on the surface are disregarded.

The second form of the command creates a curve (or two curves) and splits the surface
those curves. At most three vertices may be specified. At least two of those vertices must b
of the surface. The third, if specified, must lie on the surface.

Removing partitions:

There are two commands used to remove partitions:

 partition merge {curve|surface} <id_list>

 partition delete {curve|surface} <id>

The first command combines existing partitions where possible. This command is similar t
’composite create’ command. The difference is that this command is special-case
partitions, and will result in more efficient geometric evaluations. If all the partitions of a r
solid model entity are merged (such that there is only one ’partition’ remaining) the vir
geometry will be removed, and the original solid model geometry will be restored to the mo

The second form of the command takes a single partitioned surface or curve, finds all
partitions of the same real geometry, and does the equivalent of the ’partition merge’ com
for that set of partitions.

Creating New Virtual Geometry (The ’virtual’ Command.)

The ’virtual’ command provides a method for introducing new geometry for use in defin
locations at which to partition. Geometry created with this command exists only in Cubit,
in the actual solid model. Geometry created by the solid modeling engine may also be us
define partition locations.

Virtual Vertices:
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual77

CHAPTER 4: Geometry

d in
irtual

The
also
tices
cond
ands

es on
, and
from

two

. The
cified

d are
parent

e will
odel.

d will
d is

r on a
g the
entity

reak
ther
Virtual vertices are typically used to define locations at which to partition a curve, an
defining the end points of virtual curves. There are five forms of the command to create a v
vertex:

 virtual create vertex position <x> <y> <z> [position <x1> <y1> <z1>...]

 virtual create vertex curve <id> fraction <f> [<f2> <f3> <f4> ...] [nocurves]

virtual create vertex curve <id> position <x> <y> <z> [position <x1> <y1> <z1> ...]
[nocurves]

 virtual create vertex curve <id> vertex <id_list> [nocurves]

 virtual create vertex surface <id> position <x> <y> <z> [position <x1> <y1> <z1> ...]

The first, and simplest form of the command creates vertices at the specified positions.
second, third, and fourth forms of the command create vertices on a curve. They
automatically partition the curve at those vertex locations, as this is generally why the ver
are being created. The ’nocurves’ option prevents the automatic curve partitioning. The se
and third forms of the command behave the same as the similar curve partitioning comm
(unless the ’nocurves’ option is present.) The fourth form of the command creates vertic
the specified curve at the closest location on that curve to the specified vertices. The fifth
final form of the command creates vertices at the closest point(s) to the specified surface
the passed position(s).

Virtual Curves:

Virtual curves are typically used to define locations at which to partition surfaces. There are
forms of the command to create virtual curves:

 virtual create curve vertex <id1> <id2>

 virtual create curve vertex <id1> <id2> surface <id>

The first form of the command creates a linear curve between the two specified vertices
second form of the command creates a curve between two vertices, and lying on the spe
surface.

Deleting Virtual Vertices and Curves:

Virtual vertices and curves may be deleted using the general Cubit ’delete’ command, an
subject to the same restrictions as other geometry. They may not be deleted if they have
geometry.

Using The ’delete’ Command With Composites.

If the general ’delete’ command is invoked for a composite surface, the composite surfac
be removed, and the original surfaces used to define the composite will be restored to the m
The defining surfaces are NOT also deleted. As with any other surface, the delete comman
fail if the composite has a parent volume. This is why the ’composite delete’ comman
provided. The behavior is analogous for composite curves.

If the delete command is used on a volume containing a composite surface or curve, o
surface containing a composite curve, the entire volume or surface will be deleted, includin
original entities used to define the composite, as those entities are also children of the
being deleted.

Using the ’delete’ Command With Partitions.

It is recommended that the ’delete’ command not be used with partitions, as it may b
subsequent usage of the ’merge’ and ’delete’ forms of the ’partition’ command for o
78 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

for
real

lume
Cubit

f its

etry
ased
ding

faces
ul for
ally

ition
turns;

the
s all

e.
partitions of the same real geometry entity. However, if the ’delete’ command is used
partitions, the behavior is to delete the specified partition, and when the last partition of the
geometry is deleted, to restore the original geometry.

It works fine to use the delete command on parents of partitions, for example a vo
containing partitioned surfaces, or a surface containing partitioned curves. In this case, the
will behave exactly as expected. The specified entity will be deleted along with all o
children, including the partition entities, and the original entities that were partitioned.

▼ Automatic Geometry Decomposition
In many cases, model geometry includes protrusions which, when cut off using geom
decomposition, are easily meshable with existing algorithms. CUBIT includes a feature-b
decomposition capability which automates this process. This algorithm operates by fin
concave curves in the model, grouping them into closed loops, then forming cutting sur
based on those loops. Although this algorithm is still in the research stage, it can be usef
automating some of the decomposition required for typical models. To automatic
decompose a model, use the command

 Cut Body <body_id_range> [Trace {on|off}] [Depth <cut_depth>]

If the Trace option is used, the algorithm prints progress information as decompos
progresses. The Depth option controls how many cuts are made before the algorithm re
by default, the algorithm cuts the model wherever it can.

Automatic decomposition is used to decompose the model shown in Figure 4-2 left,, with
meshed results shown in Figure 4-2 right. In this case, automatic decomposition perform
but one of the required cuts.

Figure 4-2: Automatic decomposition, plus one manual webcut, makes the model sweepabl
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual79

CHAPTER 4: Geometry

BIT
etry
into

4-3.

oved

and
l that
an be

and

are
rt of
art of
p the
lems

ing
ing of
▼ Geometry Merging
As stated in “Non-Manifold Topology” on page 60, geometry is created and imported in CU
in a manifold state, by default. The process of converting manifold to non-manifold geom
is referred to as “geometry merging”, since it involves merging multiple geometric entities
single ones.

The merging of two manifold surfaces into one non-manifold surface is depicted in Figure

It is clear that merging geometry results in some surfaces, curves and vertices being rem
from the model. By default, entities with the lowest ID are retained.

Merging
There are several steps to the geometry merging algorithm in CUBIT; they are:

• Check lower order geometry, merge if possible

• Check topology of current entities

• Check geometry of current entities

• If both topology and geometry are alike, merge entities

Thus, in order for two entities to merge, the entities must correspond geometrically
topologically. The geometric correspondence usually comes from constructing the mode
way. The topological correspondence can come from that process as well, but also c
accomplished in CUBIT using Imprinting (see “Imprint” on page 71.)

There are several options for merging geometry in CUBIT.

• Merge geometry automatically

Merge all [Vertex | Curve | Surface]

Merge Body <id_range>

All topological entities in the model or in the specified bodies are examined for geometric
topological correspondence, and are merged if they pass the test.

If a specific entity type is specified with the Merge all, only complete entities of that type
merged. For example, if Merge all surface is entered, only vertices which are pa
corresponding surfaces being merged; vertices which correspond but which are not p
corresponding surfaces will not be merged. This command can be used to speed u
merging process for large models, but should be used with caution as it can hide prob
with the geometry (see)

• Test for merging in a specified group of geometry

Merge [Vertex | Curve | Surface] <id_range>

All topological entities in the specfiied entity list, as well as lower order topology belong
to those entities, are examined for merging. This command can be used to prevent merg
entities which correspond and would otherwise be merged, e.g. slide surfaces.

Figure 4-3: Merging two manifold surfaces into a single non-manifold surface.
80 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

metric
when
BIT

useful
, and
of an

ut all
d:

erged.

solute
rtices
sting

ral pre-
given

ities

hich
e user

creen.
cases

erance,

. For
ly (see
the

ices
rged.
• Force merge specified geometry entities

Merge [Vertex | Curve | Surface] <id_range> Force

This command results in the specified entities being merged, whether they pass the geo
correspondence test or not. This command should only be used with caution and
merging otherwise fails; instances where this is required should be reported to the CU
development team.

Examining Merged Entities
There are several mechanisms for examining which enties have been merged. The most
mechanism is assigning all merged or unmerged entities of a specified type to a group
examining that group graphically. This process can be used to examine the outer shell
assembly of volumes, for example to verify if all interior surfaces have been merged. To p
the merged or unmerged entities of a given type into a specified group, use the comman

Group {<‘name’>|<id>} [Surface | Curve | Vertex] [Merged | Unmerged]

If the entity type is unspecified, surfaces will be assumed.

Entities can also be labelled in the graphics according to whether or not they have been m
To turn merge labeling on for a specified entity type, use the command

Label {Vertex | Curve | Surface} Merge

Merge Tolerance
Geometric correspondence between entities is judged according to a specfied ab
numerical tolerance. The particular kind of spatial check depends on the type of entity. Ve
are compared by comparing their spatial position; curves are tested geometrically by te
points 1/3 and 2/3 down the curve in terms of parameter value; surfaces are tested at seve
determined points on the surface. In all cases, spatial checks are done comparing a
position on one entity with the closest point on the other entity. This allows merging of ent
which correspond spatially but which have different parameterizations.

The default absolute merge tolerance used in CUBIT is 5.0e-4. This means that points w
are at least this close will pass the geometric correspondence test used for merging. Th
may change this value using the following command:

Merge Tolerance <val>

If the user does not enter a value, the current merge tolerance value will be printed to the s
There is no upper bound to the merge tolerance, although in experience there are few
where the merge tolerance has needed to be adjusted upward. The lower bound on the tol
which is tied to the accuracy of the solid modeling engine in CUBIT, is 1e-6.

Using Geometry Merging to Verify Geometry
Geometry merging is often used to verify the correctness of an assembly of volumes
example, groups of unmerged surfaces can be used to verify the outer shell of the assemb
“Examining Merged Entities” on page 81.) There is other information that comes from
Merge all command that is useful for verifying geometry. In typical geometric models, vert
and curves which get merged will usually be part of surfaces containing them which get me
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual81

CHAPTER 4: Geometry

e been
sign
ted by
n any

ities
ing to

e
oups.

all
p).

hese

entity
ng that
in this

IT in
e id.
pagated
may
So, if a Merge all command is used and the command reports that vertices and curves hav
merged, this is usually an indication of a problem with geometry. In particular, it is often a
that there are overlapping bodies in the model. The second most common problem indica
merging curves and vertices is that the merge tolerance is set too high for a given model. I
event, merged vertices and curves should be examined closely.

▼ Geometry Groups
Groups provide a powerful capability for performing operations on multiple geometric ent
with minimal input. They can also serve as a means for sorting geometric entities accord
various criteria.

The command syntax to create or modify a group is:

group {id | “name”} add <list of topology entities>

For example, the command,

group “Exterior” add surface 1 to 2, curve 3 to 5

will create the group namedExterior consisting of the listed topological entities. Any of th
commands that can be applied to the “regular” topological entities can also be applied to gr
For example,mesh Exterior , list Exterior , or draw Exterior . A topological entity can be
removed from a group using the command:

group <id> remove <entity list>

When a group is meshed, CUBIT will automatically perform an interval matching on
surfaces in the group (including surfaces that are a part of volumes or bodies in the grou

There are several utilities in CUBIT which use groups as a means of visualizing output. T
utilities are described elsewhere, but listed here for reference:

• Webcut results (see “Web Cutting” on page 73)

• Merged and unmerged entities (see “Examining Merged Entities” on page 81)

• Sweep groups (see “Web Cutting” on page 73)

• Interval matching (see “Web Cutting” on page 73)

▼ Geometry Attributes
Each topological entity has attributes attached to it. These attributes specify aspects of the
such as the color that entity is drawn in and the meshing scheme to be used when meshi
entity. This section describes those geometry attributes that are not described elsewhere
manual.

Entity Names
Topological entities (including groups) are assigned integer identification numbers in CUB
ascending order, starting with 1. Each new entity created within CUBIT receives a uniqu
However, topological entities can also be assigned names, and these names can be pro
explicitly by the user. A topological entity may have multiple names, but a particular name
82 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

s in

mes
ype)

es of

tion
id may
R1”

ted.
e, or
ve a
spent
es is:

rvals,
UBIT

istent
tored

metry
s” at
ute
ities.

te)

st be
ibute
ally
only refer to a single entity. The following command assigns names to topological entitie
CUBIT:

{Group|Body|Volume|Surface|Curve|Vertex} Name ‘<entity_name>’

The name of each topological entity appears in the output of theList command. In addition,
topological entities can be labeled with their names (see label command). A list of all na
currently assigned and their corresponding entity type and id (optionally filtered by entity t
can be obtained with the command

list names [{group|body|volume|surface|curve|vertex|all}]

Note: In a merge operation, the names of the deleted entity will be appended to the nam
the surviving entity.

Topological entities can be identified either by the entity type followed by an identifica
number or by a unique name. Such a name can be used anywhere that an entity type and
be used. For example, if surface 3 is named CHAMFER1, the command “mesh CHAMFE
has the same result as the command “mesh surface 3”.

Each topological entity can optionally be given a unique default name when it is first crea
The default name consists of the type of topological entity (body, volume, surface, curv
vertex), followed by the ID number of the entity. For example, curve number 21 would ha
default name, “curve21”. Default names can be useful to reduce the amount of time
redoing id’s between CUBIT and ACIS versions. The command for setting the default nam

set default names {on|off}

Persistent Attributes
Typical data assigned to topological entities during a meshing session might include inte
mesh schemes, group assignments, etc. By default, most of this data is lost between C
sessions, and must be restored using the original CUBIT commands. Using CUBIT’s pers
attributes capability, some of this data can be saved with the solid model and res
automatically when the model is imported into CUBIT.

Attribute Behavior

In this context, attributes are defined as data associated directly with a particular geo
entity. In CUBIT’s implementation of attributes, these data can occupy one of three “state
any given time: they can exist only on the ACIS objects; they can exist in CUBIT’s attrib
objects; or they can be written to the appropriate data fields on CUBIT’s geometry ent
Movement of data between these states is defined by the following behaviors:

• Read:read data from ACIS objects into CUBIT attribute objects

• Actuate:assign data from CUBIT attribute objects to CUBIT geometry entities

• Update :assign data from CUBIT geometry entities to CUBIT attributes (opposite of Actua

• Write :write data from CUBIT attribute objects to ACIS objects (opposite of Read)

By default, the Actuate and Update functions are not performed automatically, and mu
requested by the user, either for specific geometric entities or for all entities for a given attr
type. The Read and Write functions are performed automatically, and are not norm
controlled by the user.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual83

CHAPTER 4: Geometry

also

several

ntity.

al

nual

l

l

l

Attribute Types

The attribute types currently implemented in CUBIT are shown in Table 4-2. There are

plans for implementing attributes based on block, nodeset, sideset, mesh scheme, and
other data.

Attribute Commands

The following commands are used to control attribute behavior in CUBIT.

{geom_list} Attribute {all | attribute_type} {actuate | remove | update | read |
write}

Calls the function (actuate, update, etc.) for the designated attribute for the designated e

Set Attribute <attribute_type> Auto {actuate | update} {on | off}

Turn on or off the automatic actuation or updating for the given attribute.

List {Body | Volume | Surface | Curve | Vertex} <id_range> Attributes

List the attributes currently residing on the given entity.

Table 4-2: Attribute types currently implemented in CUBIT. All attributes are set to
automatically read and write from and to ACIS model.

Attribute
Type

Description
Default
Actuate

Default
Update

Composite VG Information required to restore composite virtual geometry entities. Manual Manu

Genesis Entity Genesis entities (blocks, nodesets, sidesets) to which an entity belongs. Manual Ma

Group Groups to which the entity belongs. Manual Manual

Id Id assigned to the entity in the current session. Manual Manua

Interval Interval number, size and firmness. Manual Manual

Merge Information on which other entities are merged with this one. Manual Manua

Mesh
Container

Mesh owned by an entity. Manual Manual

Mesh Scheme Mesh scheme and any data specific to the mesh scheme assigned to an
entity.

Manual Manual

Name Entity name assigned by user or by default. Auto Auto

Partition VG Information required to restore partition virtual geometry entities. Manual Manua

Relative
Length

Relative length factor. Manual Manual

Smooth
Scheme

Smooth scheme and any data specific to the smooth scheme assigned to
an entity.

Manual Manual

Vertex Type Vertex type(s) assigned to a vertex. Manual Manual
84 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

either
(e.g.

h the
tering

at
r can,
xport

nifold
on-

ining
try or
Using CUBIT Attributes

A typical scenario for using CUBIT attributes would be as follows.

1. Construct geometry, merge, assign intervals, groups, etc. (i.e. normal CUBIT session)

2. Set the attribute option on usingSet Attribute on.

3. Export acis file (see export acis command).

Subsequent runs:

1. Set Attribute on.

2. Import acis file (see import acis command); all attributes stored on model get actuated,
writing the data to the geometric entities (e.g. interval, name) or performing some action
merge, group).

Used in this manner, geometry attributes allow the user to store some data directly wit
geometry, and have that data be assigned to the corresponding CUBIT objects without en
any additional commands.

▼ Exporting Geometry
Geometry can also be exported from within CUBIT to the ACIS SAT format. The SAT form
can be used to exchange geometry between ACIS-compliant applications. The use
optionally, specify which subset of bodies are to be exported. The command used to e
geometry is:

Export Acis ‘<acis_sat_filename>’ [Body <body_id_range>]

Note that the filename is enclosed in single or double quotes. If theBody keyword is not
specified, then all the bodies in the model are saved. Note that the model is saved as ma
geometry, and will have that representation when imported back into CUBIT (see“N
Manifold Topology” on page 60 and “Geometry Merging” on page 80.)

▼ New Geometry Commands

Tweaking Geometry

The tweaking commands modify models by moving, offsetting or replacing surfaces, while extending the adjo
surfaces to fill the resulting gaps. This is useful for eliminating gaps between components, simplifying geome
changing the dimensions of an object.

Tweak Surface <id_range> Offset <value> [keep]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
 Location {Vertex|Curve|Surface|Volume|Body} <id>
 [Except [X][Y][Z]] [keep]

Tweak Surface <id_range> Move {Vertex|Curve|Surface|Volume|Body} <id>
 Location <x_val> <y_val> <z_val> [Except [X][Y][Z]] [keep]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual85

CHAPTER 4: Geometry

offset
Fig-
Tweak Surface <id_range> Move <dx_val> <dy_val> <dz_val> [keep]

Tweak Surface <id_range> Move Normal To Surface <id> Distance <val>
 [Except [X][Y][Z]] [keep]

Tweak Surface <id_range> Replace [With] Surface <id> [keep] [reverse]

The first form offsets an existing set of surfaces and extends the attached surfaces to meet them. A positive
value will offset the surface in the positive surface normal direction while a negative value will go the other way.
ure 1 shows a simple example of offsetting. Note that you can also offset whole groups of surfaces at once.
86 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

ction
tion).
ded or
n will
mply
cify all

ds and
licated
The next three forms of the command simply move the given surfaces along a vector direction. The dire
can be specified either absolutely or relative to other geometry entities in the model (from entity centroid to loca
Note that when moving a surface for tweak, the surface is moved and it and the adjoining surfaces are exten
trimmed to match up again. So, for example, moving a vertically oriented planar surface in the vertical directio
have no affect. In this example, if you move the surface 10 in the x and 5 in the y the effect will be to move it si
10 in the x. You can also use these 3 forms of the command to move a protrusion around – just be sure to spe
of the surfaces on the protrusion for moving

The last form of the command actually replaces the given surface with a copy of the new surface, then exten
trims surfaces to match up. This can be useful for closing gaps between components or performing more comp
modifications to models. Figure 2 shows a simple example.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual87

CHAPTER 4: Geometry

urfaces
needed

 some-
, etc..,

ted at a
on to an
Removing Surfaces

The remove surface command removes surfaces from bodies. By default, it attempts to extend the adjoining s
to fill the resultant gap. This is a useful way to remove fillets and rounds and other features such as bosses not
for analysis. See Figure 3 for an example.

Remove Surface <id_range> [EXTEND|noextend] [keepsurface] [keep]

Thenoextend qualifier prevents the adjoining surfaces from being extended, leaving a gap in the body. This is
times useful for repairing bad geometry – the surface can be rebuilt with surface from curves or a net surface
then combined back onto the body.

Creating Vertices

The following commands have been added for creating vertices:

Create Vertex On Curve <curve_id>
 {Fraction <f> | Distance <d> | Position <xval><yval><zval>
 | Close_To Vertex <vertex_id> }
 [From Vertex <vertex_id> (optional for 'Fraction' & 'Distance')]
 [Color <color_name>]

Create Vertex AtArc Curve <id_list> [Color <color_name>]

Create Vertex AtIntersection Curve <id1> <id2> [bounded] [near] [Color <color_name>]

The first form is a general purpose command for creating a vertex on a curve. It allows the vertex to be crea
fractional distance along the curve, at an actual distance from one of the curves ends, or at the closest locati
xyz position or another vertex. You can preview the location first with the commandDraw Location On Curve …
(where the rest of the command is identical to the Create Vertex form).
88 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

ction of
ns of
-

have a

he
 start ver-
The second form simply creates vertices at arc or circle centers. The last form creates vertices at the interse
two curves. If thebounded qualifier is used, the vertices are limited to lie on the curves, otherwise the extensio
the curves are also used to calculate the intersections. Thenearoption is only valid for straight lines, where the clos
est point on each curve is created if they do not actually intersect (resulting in two new vertices).

Creating Curves

The following command creates an arc either through 3 vertices or tangent to 3 curves. TheFull qualifier will cause
a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]

The following command creates an arc using the center of the arc and 2 points on the arc. The arc will always
radius at a distance from the center to the first point, unless theRadius value is given. Again, theFull qualifier will
cause a complete circle to be created.

Requires 3 Vertices - first is center, other two are on the arc
Create Curve Arc CenterEdge Vertex <id_list> [Radius <value>] [Full]

The following command will create a curve from a vertex onto a specified position along a curve. If none of t
optional parameters are given, the location on the curve is calculated as using the shortest distance from the
tex to the curve (i.e., the new curve will be normal to the existing curve).
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual89

CHAPTER 4: Geometry

ction
verlaps

ded

ming

rim to a
ed to

is ver-
ill be

new
s.
Default = Normal to the Curve
Create Curve From Vertex <vertex_id> Onto Curve <curve_id>
 [Fraction <f> | Distance <d> | Position <xval><yval><zval> |
 Close_To Vertex <vertex_id>
 [[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance')]]
 [On Surface <surface_id>]

The following command creates curves offset at a specified distance from a planar chain of curves. The dire
vector is only needed if a single straight curve is given. The offset curves are trimmed or extended so that no o
or gaps exist between them. If the curves need to be extended the extension type can beRoundedlike arcs,Extended
tangentially (the default -straight lines are extended as straight lines and arcs are extended as arcs), or extennatu-
rally.

Direction is optional for offsets of individual straight curves only
Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>]
 [Rounded|EXTENDED|Natural]

Trimming/Extending Curves

Curves can betrimmed or extended with the following command:

Trim Curve <id> AtIntersection {Curve|Vertex <id>} Keepside Vertex <id> [near]

The curve can be trimmed or extended where it intersects with another curve or at a vertex location. When trim
to another curve, the curves must physically intersect unless they both are straight lines in which case thenearoption
is available. With the near option the closest intersection point is used to the other line – so it is possible to t
curve that lies in a different plane. When trimming to a vertex, if the vertex does not lie on the curve, it is project
the closest location on the curve or an extension of the curve if possible.

TheKeepside vertex is needed to determine which side of the curve to keep and which side to throw away. Th
tex need not be one of the curve’s vertices, nor need it lie on the curve. However, if it is not on the curve it w
projected to the curve and that location will determine which side of the curve to keep.

If the curve is part of a body or surface, it is simply copied first before trimming/extending. If it is a free curve a
curve is created and the old curve is removed. Figure 4 shows several examples of trimming/extending curve
90 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

exist-
 the tan-
 to
odies

an abso-

-direc-
rm of
rk. The

lection of
antage of

d sur-

not

sur-

 are
r body.
Creating Surfaces

The following commands createplanar surfaces. The first passes a plane through 3 vertices, the second uses an
ing plane, the third creates a plane normal to one of the global axes, and the fourth creates a plane normal to
gent of a curve at a location along the curve. By default, the commands create the surface just large enough
intersect the bounding box of the entire model with minimum surface area. Optionally, you can give a list of b
to intersect for this calculation. You can also extend the size of the surface by either a percentage distance or
lute distance of the minimum area size. The plane can be previewed with the commandDraw Plane [with]…
(where the rest of the command is the same as that to create the surface).

Create Planar Surface [with] Plane Vertex <v1_id> [vertex] <v2_id> [vertex] <v3_id>
 [intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane Surface <surface_id>
 [intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane {xplane|yplane|zplane} [offset <val>]
 [intersecting] Body <id_range>] [extended percentage|absolute <val>]

Create Planar Surface [with] Plane Normal To Curve <curve_id>
 {fraction <f> | distance <d> | position <xval><yval><zval>
 | close_to vertex <vertex_id>}
 [[from] Vertex <vertex_id> (optional for 'fraction' & 'distance')]
 [intersecting] Body <id_range>] [extended percentage|absolute <val>]

Net surfacescan be created with two different commands. A net surface passes through a set of curves in the u
tion and a set of curves in the v-direction (these u and v curves would looked like a mapped mesh). The first fo
the command uses curves to create the net surface. The curves must pass within tolerance of each other to wo
second form uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a col
mapped or submapped surfaces that form a logical rectangle. By default net surfaces are healed to take adv
any possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>]
 [HEAL|noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>]
 [HEAL|noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of complicate
faces then create a net surface from this mesh. Then the original surfaces can be removed with thenoextend option
and the new net surface combined back onto the body.

The following command creates surfacesoffsetfrom existing surfaces at the specified distance. The surfaces are
guaranteed to be extended or trimmed to share boundaries; however they are generally close.

Create Surface Offset [From] Surface <id_list> Distance <val>

The following command creates askin surface from a list of curves. An example of a skin surface is to create a
face through a set of parallel lines.

Create Surface Skin Curve <id_list>
Creating Bodies

The following command creates a body offset from another body at the specified distance. The new surfaces
extended or trimmed appropriately. A positive distance results in a larger body; a negative distance in a smalle
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual91

CHAPTER 4: Geometry

rface.
from

cutting

.

e sheet
Create Body Offset [from] Body <id_range> Distance <value>

This command allows the user to sweep a planar surface along a curve:

Sweep Surface <surface_id_range> Along Curve <curve_id> [draft_angle <degrees>]
 [draft_type <0 | 1 | 2>]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be tangential to the su
Sweep along curve also supports an additional draft type "2" which implies a "natural" extension of the corners
their curves.

Webcutting

Two new webcutting commands have been added.

Webcut {body|group} {<body_id_range>|all} [with] Plane Normal To Curve <curve_id>
 {fraction <f> | distance <d> | position <xval><yval><zval> |
 close_to vertex <vertex_id>}
 [[From] Vertex <vertex_id> (optional for 'fraction' & 'distance')]
 [NOIMPRINT|imprint][NOMERGE|merge][group_results]

Webcut {Body|Group} <id_range> [With] Loop [Curve] <id_range>
 NOIMPRINT|Imprint] [NOMERGE|Merge] [group_results]

The first command allows a user to specify an infinite cutting plane by specifying a location on a curve. The
plane is created such that it is normal to the curve tangent at the specified location.

The position on the curve can be specified as:

1) A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
2) A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve
3) An xyz position that is moved to the closest point on the given curve.
4) The position of a vertex that is moved to the closest point on the given curve.

The point on the curve can be previewed with theDraw Location On Curve command.

The second form cuts the body list with a temporary sheet body formed from the curve loop. This is the sam
as would be created from the commandCreate Surface Curve <id_list> .
92 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

rfaces
nerate
 split

heck

 cor-

ver, it
r

Imprinting

The following commands can be used for imprinting. A body can be imprinted with curves or vertices and su
can be imprinted with curves. It is useful to imprint bodies or surfaces with curves to eliminate mesh skew, ge
more favorable surfaces for meshing, or create hardlines for paving. Imprinting with a vertex can be useful to
curves for better control of the mesh or create hardpoints for paving.

Imprint Body <body_id_range> [with] Curve <curve_id_range> [keep]

Imprint Body <body_id_range> [with] Vertex <vertex_id_range> [keep]

Imprint Surface <surface_id_range> [with] Curve <curve_id_range> [keep]

Validating Geometry

More rigorous checking can be accomplished with the validate geometry commands by specifying a higher c
level. Use the following command to accomplish this:

set AcisOption Integer ‘check_level’ <integer>, where integer is one of the following:

10 = Fast error checks
20 = Level 10 checks plus slower error checks (default)
30 = Level 20 checks plus D-Cubed curve and surface checks
40 = Level 30 checks plus fast warning checks
50 = Level 40 checks plus slower warning checks
60 = Level 50 checks plus slow edge convexity change point checks
70 = Level 60 checks plus face/face intersection checks

You can also get more detailed output from the validate command with (the default isoff):

set AcisOption Integer ‘check_output’ on

Note that some of the ids listed in the output of the validate command are currently meaningless. This will be
rected in a future release of CUBIT.

Geometry Accuracy

You can control the accuracy setting of the ACIS solid model geometry with the following command:

[set] Geometry Accuracy <value = 1e-6>

Some operations, like imprinting, can be more successful with a lower accuracy setting (i.e., 0.1 to 1e-5). Howe
is not recommended to change this value.Be sure to set it back to 1e-6 before exporting the model o
doing other operations as a higher setting can corrupt your geometry.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual93

CHAPTER 4: Geometry

s when
e impre-
ough
m the

e of con-
ent

e pro-
nd accu-

s little

neces-
necessar-
w bad

clude
e

m is
clude

ntity
Healing
Healing is an optional module that detects and fixes models in ACIS (CUBIT’s core solid modeling kernel).

It is possible to create ACIS models that are not accurate enough for ACIS to process. This most often happen
geometry is created in some other modeling system and translated into an ACIS model. Such models may b
cise due to the inherent numerical limitations of their parent systems, or due to limitations of data transfer thr
neutral file formats. This imprecision can also result when an ACIS model is created at a different tolerance fro
current tolerance settings.

This imprecision leads to problems such as geometric errors in entities, gaps between entities, and the absenc
nectivity information (topology). Since ACIS is a high precision modeler, it expects all entities to satisfy string
data integrity checks for the proper functioning of its algorithms. Therefore, if such imprecise models must b
cessed by an ACIS based system, “healing” of such models is necessary to establish the desired precision a
racy.

Bad geometry can cause boolean operations, such as imprinting and webcutting, to fail. However, it usually ha
effect on meshing operations.

Analyzing Geometry

The following command analyzes the ACIS geometry and will indicate problems detected. Note that it is not
sary to analyze the geometry before healing; however, it can be useful to analyze first rather than healing un
ily. Also note that healer analysis can take a bit of time, depending on the complexity of the geometry and ho
the geometry is.

Healer Analyze Body <id_range> [logfile ['filename'] [display]]

The outputs include an estimate of the percentage of good geometry in each body. The optional logfile will in
detailed information about the geometry analysis. By default CUBIT will also highlight the bad geometry in th
graphics and give a printed summary indicating which entities are “bad”.

Percentage good geometry in Body 9: 98%

HEALER ANALYSIS SUMMARY:

Analyzed 1 Body: 9
Found 2 bad Vertices: 51, 52
Found 3 bad Curves: 76, 77, 80
Found 2 bad CoEdges. The Curves are: 76
Found 1 Bodies with problems: 9
Journaled Command: healer analyze body 9

If you try to do a webcut or boolean operation through the indicated entities, it will likely fail. The actual proble
not indicated here (future versions of CUBIT may include more detailed information), but common problems in
vertices that do not lie on curves, and curves that do not lie sufficiently close to surfaces. Thevalidate geometrycom-
mands work independently of the healer and give more detailed information.

You can control the outputs from the healer with the following commands:

Healer Set OnShow {highlight|draw|none}

Healer Set OnShow {badvertices|badcurves|badcoedges|badbodies|all} {On|Off}

Healer Set OnShow Summary {On|Off}

These settings allow you to highlight, draw or ignore the bad entities in the graphics. You can control which e
94 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

th the
e previ-

 the
when
 the

 (this

r bool-

gether
onally

ul
te that

h the
orma-

. At
types to display, as well as whether or not to show the printed summary at the end of analysis.

After you have analyzed the geometry (which can take some time), you can show the bad geometry again wi
“show” command. This command simply uses cached data (healing attributes – see the next section) from th
ous analysis.

Healer Show Body <id_list>

Healing Attributes

Once the geometry is analyzed, the results are stored as attributes on the solid model - this allows you to use
“show” command to quickly display the bad geometry again. The results attributes are automatically removed
the geometry is exported or any boolean operations are performed. They can also be explicitly removed with
command:

Healer CleanAtt Body <id_range>

You can force the results to be removed immediately after each analyze operation with the “CleanAtt” setting
can save a little memory):

Healer Set CleanAtt {On|Off}

AutoHealing

Healing is an extremely complex process. The general steps to healing are:

1. Preprocess – trim overhanging surfaces and clean topology (remove small curves and surfaces).
2. Simplify – converts splines to analytic representations, if possible.
3. Stitch – geometry cleanup and and stitching loose surfaces together to form bodies.
4. Geometry Build – repairing and building geometry to correct gaps in the model.
5. Post-Process – calculating pcurves and further repairing bad geometry.
6. Make Tolerant Curves & Vertices – a last optional step that allows special handling of unhealed entities fo

eans – allowing inaccurate geometry to be tolerated.

Autohealingmakes these steps pushbutton with the following command:

Healer Autoheal Body <id_range> [rebuild] [keep] [maketolerant]
 [logfile ['logfilename'] [display]]

The “rebuild” option actually unhooks each surface, heals it individually, then stitches all the surfaces back to
and heals again. In some cases this can more effectively fixup the body, although it is much more computati
intensive and is not recommended unless healing is unsuccessful.

The “maketolerant” option will make the edgestolerant if ACIS is unable to heal them. This can result in successf
booleans even if the body cannot be fully healed – ACIS can then sometimes “tolerate” the bad geomety. No
thehealer analyzecommand will still show these curves as “bad”, even though they are tolerant. Thevalidate geom-
etry commands however take this into consideration.

The output from the autoheal command will include an analysis of the geometry – this output is controlled wit
same “onshow” settings described earlier in the analysis section. The optional logfile will include detailed inf
tion about the healing process.

Later versions of CUBIT will allow you to individually control each step and the internal tolerances used within
this time only the commands documented here are supported.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual95

CHAPTER 4: Geometry

 proba-
g is
webcut,
a bad

ometry.

e bad sur-

s that
r into a
What if Healing is Unsuccessful?

The healing module is under continual development and is improving with every release. However, there will
bly always be situations where healing is unable to fully correct the geometry. This might be okay, as meshin
rarely affected by the small inaccuracies healing deals with. However, boolean operations on the geometry (
unite, etc..) can fail if the bad geometry must be processed by the operation (i.e., a webcut must cut through
curve or vertex).

Here are some possible methods to fix this bad geometry:

1. Return to the source of the geometry (i.e., Pro/ENGINEER) and increase the accuracy. Re-export the ge
2. Heal again using therebuild option.
3. Heal again using themake tolerant option.
4. Remove the offending surface from the body (usingremove surface <id> noextend). Then construct new surfaces

from existing curves and combine the body back together.
5. Composite the surfaces over the bad area, mesh and create a net surface from the composite, remove th

faces and combine.
6. Export the geometry as IGES, import the IGES file into a new model and look for double surfaces or surface

show up at odd angles. Delete and recreate surfaces as needed and combine the surfaces back togethe
body.

Contact the development team if you need further help with fixing bad geometry.
96 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

 as for
modate

n-
rocess.

ces
everal

tion is
 method.
to be
rking

geome-

d. This

rance

facets
re for

to
 this is
an

er.
usually
Surface Overlap
The surface overlap capability finds surfaces thatoverlap each other, with the capability to specify a distance and
angle range between them. This is useful for debugging geometry imprinting and merging problems, as well
finding gaps in large assembly models (oftentimes gaps between components are left in assemblies to accom
for tolerance fitup or welds – in general these gaps need to be filled for meshing). Finding non-imprinted, no
merged or non-touching surfaces manually can be tedious and time consuming. This tool can automate the p
The command is:

Find [Surface] Overlap [Body <id_list>]

If you do not specify a body list it will work on all the bodies in the model. The command will not check the surfa
within a given body – rather, it only checks surfaces between bodies. You can optionally limit the search to s
bodies by listing their ids.

Facetted Representation

This command works entirely off of the facetted surface representation of the model (the facetted representa
what you see in a shaded view in the graphics). There are inherent advantages and disadvantages with this
The biggest advantage is avoidance of closest-point calculations with NURBS based geometry, which tends
slow. This method also eliminates possible problems with unhealed ACIS geometry. The disadvantage is wo
with a less accurate (i.e., facetted) representation of the geometry. To circumvent problems with this facetted
try, various settings can be used to control the algorithm.

You might consider generating a more accurate facetted representation of the model before using this comman
can be done with theGraphics Tolerance {Angle|Distance} <value> command, followed by anUpdate
Hack . This will rebuild the entire graphics tree using the new tolerance values you specified. The angular tole
indicates the maximum angle between normals of adjacent surface facets. The default angular tolerance is 15° - con-
sider using a value of 5°. The distance tolerance means the maximum actual distance between the generated
and the surface. This value is by default ignored by the facetter – consider specifying a reasonable value he
more accurate results.

Find Overlap Settings

You can list out the settings that find overlap uses with:

Find [Surface] Overlap Settings

These settings can be controlled with the following commands:

set Overlap {Minimum|Maximum} Gap <value=0.0 to 0.01>
set Overlap {Minimum|Maximum} Angle <value=0.0 to 5.0>
set Overlap Normal {ANY|opposite|same}
set Overlap Tolerance <value=0.001>
set Overlap Group {ON|off}
set Overlap List {ON|off}
set Overlap Display {ON|off}

Here is an explanation of each setting:

Gap – Minimum/Maximum – the algorithm will search for surfaces that are within a distance from the minimum
maximum specified. The default range is 0 to 0.01. Since we are working with facets, testing has shown that
about right for most situations, if you are looking for coincident surfaces. If you are looking for gaps, rather th
touching surfaces, you can give a range such as 3.95 to 5.05.

Angle – Minimum/Maximum – the algorithm will search for surfaces that are within this angle range of each oth
The default range is 0.0 to 5.0 degrees. Testing has shown that this range works well for most models. It is
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual97

CHAPTER 4: Geometry

ifferent
cets of
feren-

ding
s useful

me),

two
 over-

verlap

 off.

de free

t .sat
an
necessary to have a range up to 5.0 degrees even if you are looking for coincident surfaces because of the d
types of facetting that can occur on curvy type surfaces. For example, for the case of a shaft in a hole, the fa
the shaft usually won’t be coincident with the facets of the hole, but may be offset by a certain distance circum
tially with each other. The 5 degree max angle range will account for this. If you find that the algorithm is not fin
coincident surfaces when it should, you can increase the upper range of this value. Note that this parameter i
also for finding plates coming together at an angle.

Normal – this setting determines whether to search for surfaces whose normals point towards each other (sa
away from each other (opposite) or either (any). The default is ANY, but it may be useful to limit this search tooppo-
site, as this would be the usual case for most finds.

Tolerance – two individual facets must overlap by more than this area for a match to be found. Consider the
cylindrical curves at the interface of the shaft and the block in Figure 5. Note that some of the facets actually
lap, even though the curves will analytically be coincident. You can filter out false matches by increasing the o
tolerance area.

Group – the surface pairs found can optionally be placed into a group. The name of the group defaults to
“overlap_surfaces”.

List – by default the command lists out each overlapping pair - you can turn this off.

Display – by default the command clears the graphics and displays each overlapping pair – you can turn this

▼ Model Import/Export

Importing/Exporting ACIS Files

The import/export capability of ACIS files has been enhanced to support the binary format (.sab) and to inclu
entities (vertices, curves and surfaces) in the file. The import/export commands are:

Import Acis '<acis_filename>' [no_bodies][no_surfaces][no_curves][no_vertices]
 [binary|ascii] [current]

Export Acis [Debug] 'filename' [Body <id_list> Surface <id_list> Curve <id_list>
 Vertex <id_list>] [binary|ascii] [current] [overwrite]

When importing or exporting, the filename extension will determine the default file type, be it ascii or binary. A
extension will default to ascii; a .sab extension will default to binary. If you use a different file extension you c
98 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

t
be
 and

file-

.

re will
The

lation

on con-
r repre-
n with

aled
led log-

ow-

ation
specify the type with the [binary|ascii] option (with an unsupported extension exporting will default to ascii bu
importing requires the type to be specified). Binary files can be significantly faster but are not guaranteed to
upward compatible nor cross-platform compatible (although testing has determined compatibility between NT
HP/UX). Please archive your models in ascii format.

The current option will set the default filename for autosave (cntrl-S or File->Save (auto inc)) to the imported
name. Also, the filename is then set in the window titlebar.

When importing, you can turn off the import of certain entity types – be it bodies, surfaces, curves or vertices

When exporting, you can now export individual surfaces, curves and vertices in addition to bodies. The softwa
check to see if the file exists already – if it does a dialogue will popup requiring you to confirm an overwrite.
journaled command will include the [overwrite] option.

Importing/Exporting STEP Files

The ACIS STEP translator has been added to CUBIT. This provides bi-directional functionality for data trans
between ACIS and the file format standards STEP AP203 and STEP AP214.

 STEP AP203 is an international standard which defines a neutral file format for representation of configurati
trol design data for a product. STEP AP214 is an international standard which defines a neutral file format fo
sentatation of automotive design data. It is recommended to use AP214 for exchange of geometry informatio
CUBIT.

The commands used to import and export a STEP file are:

Import Step '<step_filename>' [no_bodies][no_surfaces][no_curves][no_vertices]
 [HEAL|noheal] [logfile ['filename'] [display]]

Export Step 'filename' [Body <id_list> Surface <id_list> Curve <id_list>
 Vertex <id_list>] [logfile ['filename'] [display]] [overwrite]

As with ACIS file import, you can control which types of entities to read. By default, bodies are automatically he
when imported - if this causes problems, you can disable this option. You can also optionally request a detai
file of the conversion process and display it in a text editor.

As with ACIS file export, you can specify which individual entities to export. Again, you can produce a logfile sh
ing the conversion status.

To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options...
In step_config.pro add: STEP_EXPORT_FORMAT AP214_CD. Also be sure your export option is set toSolids. If
the geometry has problems in CUBIT, you may need to increase the geometry accuracy in Pro/ENGINEER.

Importing/Exporting IGES Files

The ACIS IGES translator has been added to CUBIT. This provides bi-directional functionality for data transl
between ACIS and the IGES (Initial Graphics Exchange Specification) format.

The commands to import/export IGES files are:

Import Iges '<iges_filename>' [no_bodies][no_surfaces][no_curves][no_vertices]
 [nofreesurfaces] [logfile ['filename'] [display]]

Export Iges 'filename' [Body <id_list> Surface <id_list> Curve <id_list>
 Vertex <id_list>] [logfile ['filename'] [display]] [overwrite]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual99

CHAPTER 4: Geometry

ult,
ng

he abil-
w be cre-

asically

 the

e, the

ave the
rge
The options here work similar to those for STEP, except on import thenofreesurfaces option will automatically con-
vert free surfaces to bodies. By default this option is off.

This translator supports Manifold Solid B-rep Objects (MSBO) as well as Trimmed Surface Objects. By defa
MSBO objects (i.e., bodies) will be converted to trimmed surfaces. If you want to support MSBO objects duri
import/export, use this command (the default isoff):

set AcisOption Integer ‘iges_proc_msbo’ On

You can add this to your .cubit file so it is turned on during each session of CUBIT.

▼ Groups

The capability to store mesh entities in groups has been added to CUBIT. Groups can also now be deleted. T
ity to propagate hexes and store them in groups has been added. In addition, element quality groups can no
ated.

Add/Remove/Xor/Delete/Cleanout

The capability to add, remove, and xor mesh entities in the group command is possible. The commands are b
the same as for adding, removing , or xoring a geometric entity for groups.

Group ['name' | <id>] Add {hex|face|edge|node <id_list>}

Group ['name' | <id>] Remove {hex|face|edge|node <id_list>}

Group ['name' | <id>] Xor {hex|face|edge|node <id_list>}

Xor means if an entity is already in the group, the command will delete this entity from the group. If it is not in
group, the entity is then added to the group.

Groups can be deleted with the following command:

Delete Group <id range> [propagate]

The optionpropagate will delete the group specified and all of its contained groups recursively.

You can remove all of the entities in a group via thecleanout command:

Group <group_id_range> Cleanout [geometry|mesh] [propagate]

By default all entities will be removed – optionally you can cleanout just geometry or mesh entities. As in delet
propagate option will cleanout the group specified and all of its contained groups recursively.

Groups in Graphics

When groups are created, they are now added to segments in the graphics tree. This means that you now h
ability to select a group graphically with the mouse, just like any other CUBIT entity. This can be useful in la
models with lots of groups.

When displaying a group containing hexes, only the outside skin of the hexes will be displayed.
100 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

ere are

ber of

h will
 con-
r child
mand.

 new par-
d.

xes.
the

d add-
up 2
Propagated Hex Groups

The ability to propagate hexes given a starting face or surface and store them in groups has been added. Th
various forms of this command, best illustrated by example.

Note: the examples below are based on first executing these commands:

brick width 10
volume 1 size 1
mesh volume 1

Starting on a Face
When starting on a face, the propagation method can end at a surface, end at a face or can end after the num
times the user specifies.

Ending at a surface:Group ['name' | <id>] Add Propagate Face <id range> End Surface <id>
example: group 2 add propagate face 1 11 21 end surface 2
result: Group 2 will be created containing 30 propagated hexes (10 layers of 3 hexes)

Ending at a face: Group ['name' | <id>] Add Propagate Face <id> End Face <id>
example: group 2 add propagate face 1 end face 1721
result: Group 2 will be created containing 5 propagated hexes (5 layers of

1 hex)

Note: Ending at a face requires starting at one face at one time, but ending at surface
allows multiple start faces

Number of Times:Group ['name' | <id>] Add Propagate Face <id range>
Times <number>

example: group 2 add propagate face 2 times 4
result: Group 2 will be created containing 4 propagated hexes (4 layers of 1 hex)

Both methods, ending at surface, end at a face or number of times, can be used with the "multiple" option whic
create a grandparent (top-level), parent (mid-level, contained within the grandparent) and child (bottom level,
tained within the parent) groups. The child groups will contain each hex layer (specified number of layers pe
group), all organized into a single parent group, which is organized underneath the group ID given to the com
Subsequent propagation commands could then be executed adding to the grandparent group, but creating a
ent and child groups. This way multiple propagation “sets” can be stored in one grandparent group, if desire

Ending at a surface:Group ['name' | <id>] Add Propagate Face <id> End Surface <id>
with multiple Multiple <number>
example: group 2 add propagate face 1 end surface 2 multiple 1
result: Ten groups will be created and stored with their respective ids, one for each layer of he

These groups will be stored in the parent group, Group 3, and Group 3 will be stored in
grand parent group, Group 2. A subsequent propagation command could be execute
ing to group 2 (the grandparent), which would create a single group contained in gro
(the parent), containing the hex layer groups (the children).

Ending at a face: Group ['name' | <id>] Add Propagate Face <id> End Surface <id>
with multiple Multiple <number>
example: group 2 add propagate face 1 end face 1721 multiple 1
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual101

CHAPTER 4: Geometry

exes.
the

d add-
up 2

ed node
d zero

ecified
that is it

veral
result: 5 groups will be created and stored with their respective ids, one for each layer of h
These groups will be stored in the parent group, Group 3, and Group 3 will be stored in
grand parent group, Group 2. A subsequent propagation command could be execute
ing to group 2 (the grandparent), which would create a single group contained in gro
(the parent), containing the hex layer groups (the children).

If the end surface or end face is ambiguous, a node direction can be specified to direct the propagation.
When specify the node direction, the node has to be picked such that when the hexes are propagated, the pick
lies in these propagated hexes. If that node is never reached while propagating, the direction is not found an
hexes will be included in the specified group.

Ending at a face: Group ['name' | <id>] Add Propagate Face <id> End Face <id>
with direction Direction Node <id>
example: group 2 add propagate face 1721 end face 1 direction node334
result: group 2 will be created containing 6 hexes

Ending at a surface:Group ['name' | <id>] Add Propagate Face <id range>
with direction End Surface <id> Direction Node <id>
example: group 2 add propagate face 1 end surface 2 direction node 334
result: group 2 will be created containing 10 hexes

Note: The direction command and the multiple command can be used together
(i.e group 2 add propagate face 1721 end face 1 multiple 2 direction node 334)

Number of Times:Group ['name' | <id>] Add Propagate Face <id> Times <number>
with multiple Multiple <number>
example: group 2 add propagate face 1 times 10 multiple 5
result: Two groups will be created and stored with their respective ids,

these two groups will be stored in the parent group, Group 3, and Group 3
will be stored in the grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, a surface direction or a node direction can be sp
to direct the propagation. The node direction has the same condition as when ending at a surface or face and
must lie in the propagated hexes.

Number of Times:Group ['name' | <id>] Add Propagate Face <id> Times <number>
with direction Direction [surface <id> | node <id>]
example: group 2 add propagate face 1721 times 4 direction surface 2
example: group 2 add propagate face 1721 times 4 direction node 334
result: group 2 will be created contained 4 hexes

Note: The direction command and the multiple command can be used together.
(i.e.group 2 add propagate face 1721 times 4 multiple 2 direction surface 1)

Starting on a Surface
Starting on a surface can end at a surface or can end after the number of times the user specifies.

Ending at a surface:Group ['name' | <id>] Add Propagate Surface <id> End Surface <id>
example: group 2 add propagate surface 1 end surface 2
result: group 2 will be created containing 1000 hexes

Number of Times:Group ['name' | <id>] Add Propagate Surface <id> Times <number>
example: group 2 add propagate surface 1 times 4
result: group 2 will be created containing 400 hexes

Both methods, ending at surface or number of times, can be used with the "multiple" option which will create se
102 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

e spec-
e prop-
ated, the
t found
groups depending upon the multiple number specified.

Ending at a surface:Group ['name' | <id>] Add Propagate Surface <id> End Surface <id>
with multiple Multiple <number>
example: group 2 add propagate surface 1 end surface 2 multiple 2
result: Five groups will be created and stored with their respective ids of multiple 2,

these groups will be stored in the parent group, Group 3, and Group 3
will be stored in the grand parent group, Group 2.

Number of Times:Group ['name' | <id>] Add Propagate Surface <id> Times <number>
with multiple Multiple <number>
example: group 2 add propagate sur face 1 times 10 multiple 5
result: Two groups will be created and stored with their respective ids of multiple 5,

these two groups will be stored in the parent group, Group 3, and Group 3
will be stored in the grand parent group, Group 2.

If number of times is specified and the direction is ambiguous, the surface direction or the node direction can b
ified to direct the propagation. If the end surface is specified, only a node direction can be specified to direct th
agation. When specifying the node direction, the node has to be picked such that when the hexes are propag
picked node lies in these propagated hexes. If that node is never reached while propagating, the direction is no
and zero hexes will be included in the specified group.

Note: for the examples below, the result can be seen by executing these commands:

brick x 10
vol 1 size 1
brick width 10
body 2 move 10
volume all size 1
merge all
mesh volume all

Number of Times:Group ['name' | <id>] Add Propagate Surface <id> Times <number>
with direction Direction [surface <id> | node <id>]
example: group 2 add propagate surface 6 times 4 direction surface 4
example: group 2 add propagate surface 6 times 4 direction node 1530
result: group 2 will be created containing 400 hexes

Ending at a surface:Group ['name' | <id>] Add Propagate Surface <id> Times <number>
with direction Direction Node <id>
example: group 2 add propagate surface 6 end surface 12 direction node 1530
result: group 2 will be created containing 400 hexes

Note: The direction command and the multiple command can be combined
(i.e.group 2 add propagate surface 6 times 4 multiple 2 direction node 1530)

Propagated Group Naming Convention
A special naming convention can be used for the propagated groups, best described by an example.
The following command will create a hierarchy of logically named groups, as follows.

group ‘W1P1T1’ add propagate surf 1 end surf 2 multiple 1

The hierarchy looks like this:

 W1
W1P1

W1P1T1
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual103

CHAPTER 4: Geometry

 parent
an inte-

 using
W1P1T2
W1P1T3
…
W1P1T10

Where W1P1 is contained within W1, and W1P1T1, W1P1T2, etc.. are contained within W1P1.

The software simply looks for numerical numbers in the group name and parses out the correct grandparent,
and child names from the substrings. There must be exactly 3 substrings in the group name, each ending with
ger for the command to work properly.

A subsequent command:

group ‘W1P2T1’ add propagate surf 3 end surf 5 multiple 1

will add a parent group to W1, called W1P2, and the subsequent child groups:

W1
W1P1

W1P1T1
W1P1T2
W1P1T3
…
W1P1T10

W1P2
W1P2T1
W1P2T2
W1P2T3
…
W1P2T10

Quality Groups

Groups can also be formed from the hexes or faces obtained from the quality command. Each group formed
quality can be drawn with its associated quality characteristics {i.e jacobian low .2 high .3} automatically.

command: group ['name'|<id>] add quality {volume|surface|group|hex|face} <id range>
<metric name> [low <value> | bottom <value> |
top <number> | bottom <number> | malformed]

example:group 2 add quality volume 1 jacobian
result: (if the meshed brick from the first note in the sectionPropagated Hex Groups is used)

Group 2 will be created and it will contain 1000 hexes with quality characteristics.
If the group is drawn, its quality characteristics will be displayed automatically.
104 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

those
sing

ute
charac-

ult in

filters

d sur-

raw-
hey
ton
he fil-

rst jaco-
Entity Filtering
CUBIT entity filtering provides the user with the capability to quickly select the entities needed and to parse out
that match certain entity characteristics. In general, think of filtering as starting with a list of entities, than pas
that list through a filter or set of filters which removes entities not meeting the filter criteria.

In general there are two modes to filtering:

1. Execute a filter immediately. This allows you to list, draw, highlight or select entities that meet a certain attrib
criteria. For example, draw all the surfaces with scheme pave or draw all elements with a certain quality
teristic.

2. Register a filter which is used in further operations. Registered filters can be used to filter entities from the
mouse pick list or keyed-in entity lists. Filters can be chained together (in a boolean AND/OR mode) to res
entities meeting a certain set of criteria.

Executing Filters

There are a large variety of filter types that can be executed immediately. It is generally recommended that the
be run from the GUI, where you can see all of the types available. An example of the syntax is:

Execute [filter] {Volume|Surface|Curve} Mesh_Scheme <mesh_scheme>
 [INCLUDE|Exclude] [on {Volume|Surface|Curve} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

The default is to run on all entities of the specified type; optionally you can give an entity list (i.e., get all pave
faces on volumes 1 to 3). If you use theINCLUDE default, the filter will return all entities matching the input. If the
EXCLUDE option is used, all entities other than the input will be returned (i.e., all surfaces not paved). TheExecute
command will always result in a listing of the entities – you can also draw or highlight them in the graphics. If d
ing, if you use theAdd qualifier they will be added to the display; otherwise the graphics are cleared first then t
are drawn. TheSelect option will select the entities in the GUI (i.e., they will be current on the right mouse but
and copied into the current selection list, if it matches the type of entities being filtered). You can also place t
tered entities into a group.

Quality Filter Commands

The filters support quality ranges of hexes or faces. Here is an example that draws the 10 hexes with the wo
bian values in the model:

execute filter hex quality_range Jacobian bottom 10 include on hex all draw

This command will draw all the unshared element edges in the model, useful for finding cracks in a mesh:

execute filter edge owned_hexes equal_to 1 include on edge all draw

Other similar filters exist.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual105

CHAPTER 4: Geometry
Execute Filter Commands

Following is a list of currently supported execute filter commands:

Execute [filter] Group Type <group_type>
 [INCLUDE|exclude] [on Group <id_range>] [Draw|Highlight]
 [into group {id|'name'}] [select] [add]

Execute [filter] {Group|Body|Volume|Surface|Curve|Vertex} Is_Meshed
 [INCLUDE|exclude] [on {Group|Body|Volume|Surface|Curve|Vertex}] <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Group|Body|Volume|Surface|Curve|Vertex} Is_Visible
 [INCLUDE|exclude] [on {Group|Body|Volume|Surface|Curve|Vertex} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Group Ref_Entities_Only
 [INCLUDE|exclude] [on Group <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Group Mesh_Entities_Only
 [INCLUDE|exclude] [on Group <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Group Is_Empty
 [INCLUDE|exclude] [on Group <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Body Volume {greater_than|greater_than_equal|less_than|equal_to|
 less_than_equal <value>} [INCLUDE|exclude] [on Volume <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume|Surface|Curve} Interval_Number
 {greater_than|less_than|equal_to <value>}

 [INCLUDE|exclude] [on {Body|Volume|Surface|Curve} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Body Is_Sheet
 [INCLUDE|exclude] [on Body <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Body Contained_Volumes Equal_To <number>
 [INCLUDE|exclude] [on Body <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume} Contained_Surfaces Equal_To <number>
 [INCLUDE|exclude] [on {Body|Volume} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume|Surface} Contained_Curves Equal_To <number>
 [INCLUDE|exclude] [on {Body|Volume|Surfaces} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]
106 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry
Execute [filter] {Body|Volume|Surface|Curve} Contained_Vertices Equal_To <number>
 [INCLUDE|exclude] [on {Body|Volume|Surface|Curve} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Volume Range {greater_than|greater_than_equal|less_than|equal_to|
 less_than_equal <value>} [INCLUDE|exclude] [on Volume <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Volume|Surface|Curve} Mesh_Scheme <mesh_scheme>
 [INCLUDE|exclude] [on {Volume|Surface|Curve} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Volume|Surface} Smooth_Scheme <mesh_scheme>
 [INCLUDE|exclude] [on {Volume|Surface} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Area {greater_than|greater_than_equal|less_than|equal_to|
 less_than_equal <value>} [INCLUDE|exclude] [on Surface <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Is_Source
 [INCLUDE|exclude] [on Surface <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Is_Target
 [INCLUDE|exclude] [on Surface <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Is_Linking
 [INCLUDE|exclude] [on Surface <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Surface|Curve} Is_Periodic
 [INCLUDE|exclude] [on {Surface|Curve} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Surface Attached_Volumes Equal_To <number>
 [INCLUDE|exclude] [on Surface <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Surface|Curve|Vertex} Merge_Partners
 [Equal_To|Less_Than|Greater_Than <number>]

 [INCLUDE|exclude] [on {Surface|Curve|Vertex} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Hex|Face} Quality_Range <metric_name>
 {Low <double>|High <double>| Top <integer>| Bottom <integer>}
 [INCLUDE|exclude] [on Hex|Face <id_range>] [Draw|Highlight]
 [into group {id|'name'}] [select] [add]

Execute [filter] {Surface|Curve} Geometry_Type <geometry_type>
 [INCLUDE|exclude] [on {Surface|Curve} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual107

CHAPTER 4: Geometry
Execute [filter] Surface Sizing_Function <sizing_function_type>
 [INCLUDE|exclude] [on Surface <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Curve|Edge}
 Length {greater_than|greater_than_equal|less_than|equal_to|
 less_than_equal <value>} [INCLUDE|exclude] [on {Curve|Edge} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Curve Attached_Surfaces Equal_To <number>
 [INCLUDE|exclude] [on Curve <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Curve Interval_Setting {Equal_To|Less_Than|Greater_Than <number>}
 [INCLUDE|exclude] [on Curve <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Curve Is_Tolerant
 [INCLUDE|exclude] [on Curve <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Vertex Attached_Curves Equal_To <number>
 [INCLUDE|exclude] [on Vertex <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node}
 Color <type>
 [INCLUDE|exclude]
 [on {Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node} <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Group|Body|Volume|Surface|Curve|Vertex|Hex|Face|Edge|Node}
 Related_To
 [on {Body|Volume|Node|Edge|Face} <id_range>]
 [INCLUDE|exclude] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Hex Full_Hex [INCLUDE|exclude] [on Hex <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Hex Node_Hex [INCLUDE|exclude] [on Hex <id_range>]
 [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] {Face|Edge} Owned_Hexes Equal_To <number> [INCLUDE|exclude]
 [on {Face|Edge} <id_range>] [Draw|Highlight] [into group {id|'name'}]
 [select] [add]

Execute [filter] Face Free_Faces [INCLUDE|exclude]
 [on Face <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Edge Owned_Faces Equal_To <number> [INCLUDE|exclude]
 [on Edge <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Edge Free_Edges [INCLUDE|exclude]
 [on Edge <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]

Execute [filter] Node Position_Fixed [INCLUDE|exclude]
 [on Node <id_range>] [Draw|Highlight] [into group {id|'name'}] [select] [add]
108 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry

t, the
during
during

 can

I dia-

mple,
rve is
n pick-
dow.

a

he filter

 con-
 entities

ntities
 entities
Registering Filters

When filters are registered they can be used in conjunction with mouse picking and entity parsing. By defaul
entities found during a mouse pick list will be passed through any registered filters. If any entities are removed
this process a warning message will be echoed to the output window. You can control whether filtering occurs
mouse selection with this command:

set Pick Filter [ON|off]

In GUI dialogue entity list fields, the registered filters will always filter the input list. On the command line you
cause draw,highlight and list commands to use the filters with the following setting:

set Parse Filter [on|OFF]

The draw, highlight and list commands can be override this setting by the options [filter | no filter].

There currently is not a way to filter every input list on the command line nor turn off the registered filters in GU
logue input lists.

Some of the GUI pages register filters internally – this can help the user to avoid unnecessary picks. For exa
when webcutting with a plane normal to a curve, the end of the curve needs to be picked. Thus, after the cu
selected a filter is registered allowing only vertices attached to the end of the selected curve to be picked. Whe
ing you will be reminded that certain items are being filtered out via an information message in the output win
This can be very helpful when trying to pick vertices that are coincident with other vertices, etc.. This is calledtool
defined filter. User registered filters are calleduser defined.

An example of a command to register a filter follows:

Register [filter] Surface Geometry_Type
{spline|plane|cone|cylinder|sphere|torus|best fit] [and|or] [include|exclude]

Filtering With Registered Filters

After the filters are registered, they can be exercised with:

Filter <entity> <id range>

For example, if a surface filter was registered (i.e register surface related_to volume 1), the command:

Filter surface all

will display the ids of the surfaces that pass this filter. If there are more than one surface filter is registered, t
command will consider all of them.

If an entity is to be filtered with respect to other registered entity filters, the range identifier "in" can be used to
sider those other entity filters. For example, suppose there are node and face filters registered. To filter hex
with consideration to the face and node filters, the command would be:

Filter hex in face <id range> in node <id range> {filter hex in face all in node all}

The effect of this command will be to first parse and filter the node entities; then to parse and filter the face e
with respect to the nodes that pass the node filter(s). Then to parse and filter (if there are hex filters) the hex
with respect to the faces that pass the previous face filter(s).
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual109

CHAPTER 4: Geometry

nd is:

ppress

mmand
Filter Operations

List
The filter(s) registered can be listed by entity or they can all be listed at one time. To list by entity, the comma

List <entity_type> Filter {i.e list curve filter}

To list all the filters, the command is:list filter all

Suppose these commands have been entered,

register curve length equal_to 5 andregister curve mesh_scheme bias

An example of thelist curve filter command output is shown below:

____________filter type________________ _______status_______
1.) curve_length (= 5) {include}active User Defined
2.) curve_mesh_scheme (bias) {or, include} active User Defined

Suppress/Resume
Each registered filter is at first "active". The user can make this filter inactive by suppressing the filter. To su
the filter, the command is:

Filter Suppress <entity> Filter <number>

Using the example above, to suppress the curve_mesh_scheme filter, the command is:

filter suppress curve filter 2

To make it active again, the command is:filter resume curve filter 2

All the filters can be suppressed/ unsuppressed at one time with the command:

Filter {suppress | resume} All

Move
If there are multiple filters, these filters can be re-arranged. The command is:

Filter Move <entity> Filter <number> to <number>

Using the curve filters example above, to move the curve_mesh_scheme above the curve_length filter, the co
is:

filter move curve filter 2 to 1

The resultinglist curve filter command would now output:

____________filter type________________ _________status______
1.) curve_mesh_scheme (bias) {include} active User Defined
2.) curve_length (= 5) {or, include} active User Defined

Delete
Once a filter has been registered, it can be deleted with the command:

Filter Delete <entity_type> Filter <number>

Using the curve filter examples again, to delete the first filter (curve_length), the command is:
110 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry
filter delete curve filter 1

All the filters can be deleted at one time with the command:filter delete all

Register Filter Commands

A list of the currenty available register commands follows:

Register [filter] Curve Related_To {body|volume|surface|vertex <id>}
[and|or] [include|exclude]

Register [filter] Curve Geometry_Type {arc|segmented|spline|line|point}

Register [filter] Curve Length {greater_than|greater_than_equal|less_than|
equal_to|less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Curve Attached_Surfaces Equal_To <number> [and|or]
[include|exclude]

Register [filter] Curve Mesh_Scheme {bias|dualbias|equal|featuresize|morph}
 [and|or] [include|exclude]

Register [filter] Curve Is_Tolerant [and|or] [include|exclude]

Register [filter] Vertex Related_To {curve|surface|volume|body<id>} [and|or]
[include|exclude]

Register [filter] Vertex Attached_Curves Equal_To <number> [and|or] [include|exclude]

Register [filter] Surface Area {greater_than|greater_than_equal|less_than|
equal_to|less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Surface Attached_Volumes Equal_To <number> [and|or]
[include|exclude]

Register [filter] Surface Mesh_Scheme
{map|pave|parallelpave|pentagaon|submap|triangle|trimap |
trimesh|tripave} [and|or] [include|exclude]

Register [filter] {surface|volume} Smooth_Scheme <type> [and|or] [include|exclude]
***** possible smooth schemes are: laplacian (free/fixed), equipotential (free/fixed),

isoparametric, centroid area pull (free/fixed), replicate, optimize (free/fixed/jacobian/optms)
winslow (free/fixed), randomize

Register [filter] Surface Sizing_Function {constant|linear|curvature|super|test|exodus|
 inv_int|interval|none} [and|or] [include|exclude]

Register [filter] Surface Geometry_Type
{spline|plane|cone|cylinder|sphere|torus|best fit] [and|or] [include|exclude]

Register [filter] Surface {is_linking|is_source|is_target} [and|or] [include|exclude]

Register [filter] Surface Related_To {vertex|curve|volume|body <id>} [and|or]
[include|exclude]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual111

CHAPTER 4: Geometry
Register [filter] Volume Range {greater_than|greater_than_equal|less_than|equal_to|
 less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Volume Mesh_Scheme
{dice|map|plaster|project|pyramid|rotate|sweep|translate}
[and|or] [include|exclude]

Register [filter] Volume Related_To {vertex|curve|surface|body} [and|or]
[include|exclude]

Register [filter] Body Volume {greater_than|greater_than_equal|less_than|
equal_to|less_than_equal <value>} [and|or] [include|exclude]

Register [filter] Body Related_To [vertex|curve|surface|volume<id>] [and|or]
[include|exclude]

Register [filter] Body Is_Sheet [and|or] [include|exclude]

Register [filter] Body Contained_Volumes Equal_To <number> [and|or]
[include|exclude]

Register [filter] {curve|surface|vertex} Merge_Partners
[equal_to|greater_than|less_than <number>]
[and|or] [include|exclude]

Register [filter] {vertex|curve|surface|volume|body} Is_Meshed [and|or]
[include|exclude]

Register [filter] {curve|surface} Is_Periodic [and|or] [include|exclude]

Register [filter] {vertex|curve|surface|volume|body|hex|face|edge|node}
Color <color> [and|or] [include|exclude]

Register [filter] {vertex|curve|surface|volume|body} Visibility [and|or] [include|exclude]

Register [filter] {curve|surface|volume|body} Interval_Number
{equal_to|greater_than|less_than <number>} [and|or] [include|exclude]

Register [filter] {curve|surface|volume|body} Interval_Setting {default|soft|hard}
[and|or] [include|exclude]

Register [filter] {surface|volume} Smooth_Scheme <type> [and|or] [include|exclude]
***** possible smooth schemes are: laplacian (free/fixed), equipotential (free/fixed), isoparametric

centroid area pull (free/fixed), replicate, optimize (free/fixed/jacobian/optms)
winslow (free/fixed), randomize

Register [filter] {body|volume} Contained_Surfaces Equal_To <number> [and|or]
[include|exclude]

Register [filter] {body|volume|surface} Contained_Curves Equal_To <number> [and|or]
[include|exclude]

Register [filter] {body|volume|surface} Contained_Curves Equal_To <number> [and|or]
[include|exclude]

Register [filter] {hex|face} Quality_Range <metric_name>
{low|high|top|bottom <number> | malformed}
112 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 4: Geometry
 [and|or] [include|exclude]
*** possible metric names are: aspect ratio, aspect ratio gamma, skew, taper, warpage,

element area, stretch, maximum/mininum angle, oddy, folding, jacobian, element volume
 diagonal ratio, dimension, scaled jacobian

Register [filter] Hex Related_To {body|volume|node|face| edge <id>} [and|or]
[include|exclude]

Register [filter] Hex Full_Hex [and|or] [include|exclude]

Register [filter] Hex Node_Hex [and|or] [include|exclude]

Register [filter] Face Related_To {body|volume|surface|hex|edge|node<id>} [and|or]
[include|exclude]

Register [filter] Edge Related_To {body|volume|surface|curve|vertex|
 hex|face|node<id>} [and|or] [include|exclude]

Register [filter] Node Related_To {body|volume|surface|curve|vertex <id>|
 hex|face|edge} [and|or] [include|exclude]

Register [filter] Node Position_Fixed [and|or] [include|exclude]

Register [filter] Edge Length
{greater_than|greater_than_equal|less_than|equal_to|less_than_equal <value>}

 [and|or] [include|exclude]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual113

CHAPTER 4: Geometry
114 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

er. The
terval
shing
d the

sing
, etc.),
in the
asic

er of
pes of
to each
Chapter 5: Mesh Generation
▼ Introduction…115

▼ Interval Assignment…117

▼ Meshing Schemes…121

▼ Automatic Scheme Selection…157

▼ Mesh-Related Topics…159

▼ Mesh Smoothing…161

▼ Mesh Deletion…166

▼ Node and NodeSet Repositioning…167

▼ Mesh Importing and Duplicating…167

▼ Mesh Quality Assessment…169

▼ Mesh Validity…178

▼ Introduction
The methods used to generate a mesh on existing geometry are discussed in this chapt
definitions used to describe the process are first presented, followed by descriptions of in
specification, mesh scheme selection, and available curve, surface, and volume me
techniques. The chapter concludes with a description of the mesh editing capabilities, an
quality metrics available for viewing mesh quality, .

Element Types
For each topology type of entity in the model geometry, CUBIT can discretize the entity u
one or several types of basic elements; for each order entity in the geometry (vertex, curve
CUBIT uses a basic element designator to describe the corresponding entity or entities
mesh. A given geometric topology entity can be discretized with one or several kinds of b
elements in CUBIT. For example, a geometric surface in CUBIT is discretized into a numb
faces; this is the basic element designator for surfaces. These faces can consist of two ty
basic elements, quadrilaterals or triangles. The basic element designators corresponding
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual115

CHAPTER 5: Mesh Generation

are

se use
mple,
The
f the

ement

lows
y. For

four

mesh
two to

user
es are
d with
this

 user.
type of geometry entity, along with the types of basic elements supported in CUBIT,
summarized in Table 5-1.

For each basic element, CUBIT also supports the definition of several element types, who
depends on the level of accuracy desired in the target finite element analysis. For exa
CUBIT can write both linear (4-noded) and quadratic (8- or 9-noded) quadrilaterals.
element type used for a geometry entity is specified after meshing occurs, as part o
boundary condition specification. See... for a description of that process and the various el
types available in CUBIT.

Each mesh entity is associated with a geometry entity which owns it. This associativity al
the user to mesh, display, color, and attach attributes to the mesh through the geometr
example, setting a mesh attribute on a surface affects all faces owned by that surface.

Mesh Generation Process
Starting with a geometric model, the mesh generation process in CUBIT consists of
primary steps:

1) Set interval size and count for groups of or individual entities

2) Set mesh schemes

3) Generate the mesh for the model

4) Inspect mesh for quality and suitability for targeted analysis

There are also mechanisms for improving mesh quality locally using smoothing and local
topology changes. For complex models, this process is usually iterative, repeating steps
four above.

The mesh for any given geometry is usually generated hierarchically. For example, if the
issues a command to mesh a volume, first its vertices are meshed with nodes, then curv
meshed with edges, then surfaces are meshed with faces, and finally the volume is meshe
hexes. Vertex meshing is of course trivial and thus the user is given little control over
process. However, curve, surface, and volume meshing can be directly controlled by the

Each of the steps listed above are now described in detail.

Table 5-1: Basic element designators and elements corresponding to geometry entities.

Geometry
Entity Type

Basic Element
Designator

Basic Element(s) In CUBIT

Vertex Node Node

Curve Edge Edge

Surface Face Quadrilateral, Triangle

Volume Element Hexahedron, Tetrahedron, Pyramid
116 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

n
r by
urves
se
, the
erval

user
metry

hing

rval

tly by

ness
ct the
ls can
ness

nds are

given

r for

s

or by
n be

n a
ts the
▼ Interval Assignment
Mesh density is usually controlled by theintervals,i.e. the number of mesh edges, specified o
curves. Intervals are set either directly by specifying the interval count for a curve, o
specifying a desired size for each interval on a curve. Intervals can be specified for c
individually, or indirectly by specifying intervals for higher order geometry containing tho
curves. Because of interval constraints imposed by various meshing algorithms in CUBIT
assignment of intervals to curves is not completely arbitrary. For this reason, a global int
match must be performed prior to meshing one or more surfaces or volumes.

Interval Firmness
Before describing the methods used to set and change intervals, it is important that the
understand the concept of interval firmness. An interval firmness value is assigned to a geo
curve along with an interval count or size; this firmness is one of the following values:

hard: interval count is fixed and is not adjusted by interval size command or by interval matc

soft: current interval count is a goal and may be adjusted up or down slightly by inte
matching or changed by other interval size commands

default: default firmness setting, used for detecting whether intervals have been set explici
the user or by other tools

Interval firmness is used in several ways in CUBIT. Each curve is assigned an interval firm
along with an interval count or size. Commands and tools which change intervals also affe
interval firmness of the curves. Those same commands and tools which change interva
only do so if the curves being changed have a lower-precedence interval firmness. The firm
settings are listed above in order of decreasing precedence. For example, some comma
only able to change curves whose interval firmness issoft or default ; curves withhard
firmness are not changed by these commands.

More examples of interval setting commands and how they are affected by firmness are
in the following sections.

A curve’s interval firmness can be set explicitly by the user, either for an individual curve o
all the curves contained in a higher order entity, using the command:

{geom_list} Interval {Default | Soft | Hard}

All curves are initialized with an interval firmness ofdefault , and any command that change
intervals (including interval assignment) upgrades the firmness to at leastsoft .

Explicit Specification of Intervals
The density of edges along curves is specified by setting the actual number of intervals
specifying a desired average interval size. The number of intervals or interval size ca
explicitly set curve by curve, or implicitly set by specifying the intervals or interval size o
surface or volume containing that edge. For example, setting the intervals for a volume se
intervals on all curves in that volume.

The commands to specify the number of intervals at the command line are:

{geom_list} Interval <intervals>

{geom_list} [Interval] Size <interval_size>
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual117

CHAPTER 5: Mesh Generation

aces,
.

d by
ays

done

ble
. The

t
g an
ption
that
5-2.

in the

ft
The first command above sets interval counts. When setting interval counts for surf
volumes, bodies and groups, an intervals firmness ofsoft is assigned to the owned curves
When setting the interval count for a curve, a firmness ofhard is assigned.

Interval size may be specified as well; the interval count for each owned curve is compute
dividing the curve’s arc length by the specified interval size. Interval size commands alw
assign a firmness ofsoft to the specified entities.

The user can scale the current intervals or size with the following commands. Scaling is
on an entity by entity basis.

{geom_list} Interval Factor <factor>

{geom_list} [Interval] Size Factor <factor>

Vertices are not allowed in thegeom_list for these commands.

Automatic Specification of Intervals
In addition to specifying intervals explicitly based on a known count or size, CUBIT is also a
to compute interval counts automatically based on characteristics of the model geometry
following automatic interval setting command can be used:

{geom_list} Size Auto [Factor <factor>]

Vertices are not allowed in thegeom_list for this command. Automatic interval assignmen
works by accumulating the distribution of arc lengths of all owned curves, and assignin
interval size based on a known relative position within that distribution. The user has the o
of specifying a relative factor, between zero and eleven, which specifies a position within
arc length distribution. The meaning of various points in this range is summarized in Table

The default factor is six.

The user may assign the interval size to be the arc length of the smallest curve contained
specified entity or entities using the following command:

{geom_list} Size Smallest curve

Vertices are not allowed in thegeom_list for this command. This command assigns a so
interval firmness.

Table 5-2: Relative size factors.

Factor Interpretation

0 Size of zero

1 Size of smallest curve in entities specified.

10 Size of largest curve in entities specified.

11 1.5 times size of largest curve in entities specified.
118 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

to the
terals
ins the
ected
t each
ented

ome
ection
oked
lso

urves.

, while
gned

urves

added
ffected
hat its

ps of

same
cified,

the
there
s are
tions
wing
Interval Matching
Each meshing scheme in CUBIT imposes a set of constraints on the intervals assigned
curves bounding the entity being meshed. For example, meshing any surface with quadrila
requires that the surface be bounded by an even number of mesh edges. This constra
intervals on the bounding curves to sum to an even number. For a collection of conn
surfaces and volumes, these interval constraints must be resolved globally to ensure tha
surface will be meshable with the assigned scheme. The global solution technique implem
in CUBIT is referred to as interval matching.

When meshing a surface or volume, matching intervals is performed automatically. In s
cases, interval matching needs to be invoked manually, for example when meshing a coll
of volumes, or a collection of surfaces not in a common volume, or when the user has inv
thecontrol skew command (detailed in the Mesh Quality section). Interval matching can a
be called to check whether the assigned intervals and schemes are compatible.

The command syntax for manually matching intervals is the following:

Match Intervals {geom_list}

Here the entity list can be any mixed collection of groups, bodies, volumes, surfaces and c

The interval matcher assigns intervals as close as possible to the user-specified intervals
satisfying global interval constraints. The goal is to minimize the relative change in pre-assi
intervals on all entities. Interval matching only changes curves with interval firmness ofsoft or
default .

Extra constraints can be added by the user to improve mesh quality locally; in particular, c
can be constrained to have the same intervals using the command

{curve_list} Interval {Same|Different}

Specifying that curves have the “same” intervals stores them in a set. More curves may be
to an existing set, and sets merged, by future commands. The current contents of the a
sets are printed after each command. A curve may be removed from a set by specifying t
intervals are “different.”

The user may also set interval constraints for groups of curves in relation to other grou
curves using the command

Curve {curve_list} Interval {Equal_to|Greater_than_equal|Less_than_equal}
[Curve {curve_list}] [<extra_intervals>]

Thus the set of curves specified first will have either the same, the same or greater, or the
or lesser number of intervals as the second set of curves, if any. If extra intervals are spe
then those intervals will be added to the right-hand-side of the equation.

The interval assignment algorithm tries to find one good interval solution from among
possibly infinite set of solutions. However, if many curves are hard-set or already meshed,
may be no solution. To improve the chances of finding a solution, it is suggested that curve
soft-set whenever possible. Also, a solution might not exist due to the way the local selec
of corners and sides of mapped surfaces interact globally. If there is no solution, the follo
command may help in determining the cause:

Match Intervals {geom_list} [Seed Curve <range>]
[Assign Groups [Only|Infeasible]] [Map|Pave]
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual119

CHAPTER 5: Mesh Generation

the
t

poor

red.
be

e the

erval
of

ful in
t.

is not
rvals

wept
erval
t side
re not
SpecifyingAssign Groups will create groups that contain independent subproblems of
global problem. SpecifyingAssign Groups Only will group independent subproblems, bu
the algorithm will not attempt to solve these subproblems.Assign Groups Infeasible will
put each independent subproblem with no solution into specially named groups. Often
corner choices and surface meshing schemes will be illuminated this way. IfMap or Pave is
specified, then only subproblems involving mapping or paving constraints will be conside
If a Seed Curve is specified, then only those subproblems containing that curve will
considered.

Advanced users may also wish to experiment with setting the following, which may chang
interval solution slightly:

Set Match Intervals Rounding {on|off}

Set Match Intervals Fast {on|off}

The user can also constrain the parity of intervals on curves:

{geom_list} Interval {Even | Odd}

If Even is specified, then during subsequent interval setting commands and during int
assignment, curves areforced to have an even number of intervals. If the current number
intervals is odd, then it is increased by one to be even. IfOdd is specified then intervalsmay be
either even or odd. Unless user specified, curves are odd. Setting intervals to even is use
problems where adjoining faces are paved one by one without global interval assignmen

Periodic Intervals
The number of intervals on a periodic surface, such as a cylinder, in the dimension that
represented by a curve is usually set implicitly by the surface size. However, periodic inte
and firmness can be specified explicitly by the following commands:

{geom_list} Periodic Interval <intervals>

{geom_list} Periodic Interval {Default|Soft|Hard}

Relative Intervals
If the user needs fine control over mesh density, then for curvy or slanted sides of s
geometries, it is often useful to treat curves as if they had a different length when setting int
sizes. For example, the user may wish to specify that a slanting side curve and a straigh
curve have the same “relative length, despite their true length; see Figure 5-1. These a

Figure 5-1: Useful relative lengths.

1.0

0.55

0.45

1.01.0
120 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

cified
and:

ing
efore

eme

on
After
ality
interval matching constraints; interval matching may change intervals so that the user-spe
ratio does not hold exactly. The relative lengths of curves are set with the following comm

{geom_list} Relative Length <size>

The following command is used to assign intervals proportional to these lengths:

{geom_list} Relative Interval <base_interval>

For a curve with relative lengthx, setting a relative interval ofy producesxy intervals, rounded
to the nearest integer.

▼ Meshing Schemes
Information on specific mesh schemes available in CUBIT is given in this section; the follow
sections have important meshing-related information as well, and should be read b
applying any of the mesh schemes described below.

In most cases, meshing a geometry entity in CUBIT consists of three steps:

1) Set the interval number or size for the entity (see “Interval Assignment” on page 117.)

2) Set the scheme for the object, along with any scheme-specific information, using the sch
setting commands described below.

3) Mesh the object, using the command:

Mesh {geom_list}

This command will match intervals on the given entity (see “Interval Assignment”
page 117), then mesh any unmeshed lower order entities, then mesh the given entity.
meshing is completed, the mesh quality is automatically checked (see “Mesh Qu
Assessment” on page 169), then the mesh is drawn in the graphics window.

Bias, Dualbias
Applies to: Curves

Summary: Meshes a curve with node spacing biased toward one or both curve ends.

Syntax:

{curve_list} Scheme Bias {Factor|First_Delta|Fraction} <double>

 [Start Vertex <id>]

{curve_list} Scheme Dualbias {Factor|First_Delta|Fraction} <double>

{curve_list} Scheme Bias Fine Size <double>

 {Coarse Size <double>|Factor <double>}

 [Start Vertex <id>]

{curve_list} Scheme Dualbias Fine Size <double>

 {Coarse Size <double>|Factor <double>}
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual121

CHAPTER 5: Mesh Generation

n the
curve
dge is

of a
vertex,

tarting
meters
s

e 117.
ending

ze are
tal

r
ard

t

s

.

the

mand
Related Commands:

{curve_list} Scheme Curvature

{curve_list} Scheme Stretch

{curve_list} Reverse Bias

Propagate Curve Biasing [surface|volume|body|group <id_list>]

Discussion:

The Bias scheme allows a mesh that is a different density at one vertex of the curve tha
other. The Dualbias scheme allows a mesh that is a different density in the middle of the
than at the ends. The lengths of the edges follow a geometric series: the length of an e
equal to a constant factor times the length of the preceding edge, except at the middle
dualbiased curve. If the factor is greater than one, then, as one moves away from the start
successive edges get longer.

There are four basic interdependent parameters: the number of intervals, the factor, the s
size, and the ending size. The user may specify several combinations of these para
described below. For scheme Bias, thestart vertex may also be specified. If no start vertex i
specified, the curve’s intrinsic start vertex is used as the start vertex; Hint, list the curve.

1) {curve_list} Scheme Dualbias {Factor|First_Delta|Fraction} <double>

This syntax assumes that the correct number of edges will be specified by asize or interval
command, and is one of the independent parameters; See “Interval Assignment” on pag
If factor is specified, then this is the ratio between successive edges, and the starting and
size is whatever makes all of the edge lengths add up to the length of the curve. Iffirst_delta
is specified, then this is the absolute length of the first edge, and the factor and ending si
dependent. Iffraction is specified, then the length of the first edge is that fraction of the to
curve length, and the factor and ending size is dependent. The syntax forbias is similar.

2) {curve_list} Scheme Dualbias Fine Size <double>

 {Coarse Size <double>|Factor <double>}

This syntax assumes that the number ofintervals is a dependent variable: any prior size o
interval setting will be overridden by this command, and the number of intervals will be h
set on the curve. Thefine size is the edge length at the ends, or at thestart vertex for scheme
bias, and is always independent. Thecoarse size is the size at the middle of the curve, or a
the non-start vertex; the coarse size may be smaller than the fine size. If thecoarse size is
specified, then the factor is dependent. Otherwise, thefactor is specified and the coarse size i
dependent. The syntax for schemebias is similar.

Scheme stretch is used to keep the number of intervals independent, while specifyingeither
or both the start and ending size. The edges will not, in general, follow a geometric series

Scheme curvature is used to keep the number of intervals independent, while adapting
edge lengths to local changes in curvature.

A biased curve can be biased towards the opposite end using thereversebias command. The
curve may be meshed or unmeshed at this point. Reversing the curve bias using this com
is equivalent to setting a bias factor equal to the inverse of the current bias factor.
122 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

ts of
ied to
ould
circle

ed via
Figure
Figure 5-2 shows the result of meshing two edges with equal and bias schemes.

Figure 5-2: Equal and biased curve meshing

Circle

Applies to: Surfaces

Summary: Produces a circle-primitive mesh for a surface

Syntax:

{surface_list} Scheme Circle [Interval <int> | Delta_r <double>]

[fraction <double>]

Discussion:

TheCircle scheme indicates that the region should be meshed as a circle. A “circle”consis
a single bounding curve containing an even number of intervals. Thus, circle can be appl
circles, ellipses, ovals, and regions with “corners” (e.g. polygons). The bounding curve sh
enclose a convex region. Non-planar bounding loops can also be meshed using the
primitive provided the surface curvature is not too great. The mesh resembles that obtain
polar coordinates except that the cells at the “center” are quadrilaterals, not triangles. See

Figure 5-3: Circle Primitive Mesh

BiasedEqual
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual123

CHAPTER 5: Mesh Generation

tional

at has
n be set
ally if

mesh
vertex
ex). If
the
ing
the

urce
ercent
in this
tio of
ow the
each

es, then
n.
5-1 for an example of a circle mesh. Radial grading of the mesh may be achieved via the op
[intervals] input parameter or by specifying the radial size[delta_r] of the outermost element.
Fraction has the range 0 <fraction < 1 and defaults to 0.5.Fraction determines the size of
the inner portion of the circle mesh relative to the total radius of the circle.

Copy
Applies to: Curves, Surfaces, Volumes

Summary: Copies the mesh from one entity to another

Syntax:

{curve_list} Scheme Copy source curve <id_range> [[Source Node <starting
node id> <ending node id>] [Source Percent [<percentage> | auto]]

 [Source [combine|SEPARATE]] [Target [combine|SEPARATE]]

 [Source Vertex <id_range>] [Target Vertex <id_range>]]

{surface_list} Scheme Copy [Source Surface <id> Source Curve <id>
Target Curve <id> Source Vertex <id> Target Vertex <id>
Source Edge <id> Target Edge <id> Source Node <id> Target Node <id>]
[Nosmoothing]

{volume_list} Scheme Copy [Source Volume <id> Source Surface <id>
Target Surface <id> Source Curve <id> Target Curve <id>
Source Vertex <id> Target Vertex <id>] [Nosmoothing]

Related Commands:

Set Morph Smooth {on | off}

Discussion:

If the user desires to copy the mesh from a surface, volume, or a curve or set of curves th
already been meshed, the copy mesh scheme can be used. Note that this scheme ca
before the source entity has been meshed; the source entity will be meshed automatic
necessary before the mesh is copied to the target entity.

The user has the option of providing orientation data to specify how to orient the source
on the target entity. For example, when copying a curve mesh, the user can specify which
on the source (the source vertex) gets copied to which vertex on the target (the target vert
no orientation data is specified, or if the data is insufficient to completely determine
orientation on the target entity, the copy algorithm will attempt to determine the remain
orientation data automatically. If conflicting or inappropriate orientation data is given,
algorithm attempts to discard enough information to arrive at a proper mesh orientation.

Curve mesh copying has certain options that allow the copying of just a section of the so
curves’ mesh. These options are accessed through the extra keywords given. The p
options allow the user to specify that a certain percentage of the source mesh be copied--
context the ‘auto’ keyword means that the percentage will be calculated based on the ra
lengths of the source and target curves. The combine and separate keywords relate to h
command line is interpreted. If the user wishes to specify a group of target curves that will
receive the copy of the source mesh, then the defaulttarget separateoptionis in effect. If,
however, the user wishes the source mesh to be spread out along the range of target curv
thetarget combine option must be used. The source curves are treated in a similar fashio
124 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

target

of the
uired,
rfaces
thing
iding
target
h will

have
the
the

this
er the
the
Volume mesh copying depends on the surface copying scheme. Because of this, the
volume must not have any of its surfaces meshed already.

Because of how the copying algorithm works, the target mesh might not be an exact copy
source mesh. This happens because of the effects of smoothing. If an exact copy is req
there are two possible solutions. The first option is useful when the source and target su
or volumes are exact matches. If this criterion is met, the user may specify the Nosmoo
option. That will disable any smoothing of the mesh on the target surface and thereby prov
an extremely exact copy of the mesh. The second option is useful if the source and
surfaces are not identical. In this case the user may set the morph smoothing flag on, whic
activate a special smoother that will match up the meshes as closely as possible.

Curvature
Applies to: Curves

Summary: Mesh a curve with interval sizes adapted to local curvature.

Syntax:

curve <id_range> scheme curvature <double>

Discussion:

The value of <double> controls the degree of adaption. If zero, the resulting mesh will
nearly equal intervals. If greater than zero, the smallest intervals will correspond to
locations of largest curvature. If less than zero, the largest intervals will correspond to
locations of largest curvature. The default value of<double> is zero. Straight lines and
circular arcs will produce meshes with near-equal intervals. The method for generating
mesh is iterative and may sometimes not converge. If the method does not converge, eith
<double> is too large (over-adaption) or the number of intervals is too small. Currently,
scheme does not work on periodic curves.

Dice
Applies to: Curves, Surfaces, Volumes

Summary: Refinement algorithm for refining edges, quads and hexes into smaller ones.

Syntax:

{geom_list} Scheme Dice

Related Commands:

{geom_list} Initialize Dicer

{geom_list} DicerSheet Interval <interval>

DicerSheet <id> interval <interval>

DicerSheet Default Interval <interval>

Replace Mesh {geom_list}

Set Node Constraint {on|off}

Delete Fine Mesh {geom_list} [Propagate]

Discussion:
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual125

CHAPTER 5: Mesh Generation

h and
x mesh

erated
mber
as the
ll be

each

ve the
sheets

pagate
terval

the
the fine

of the
ose

the
ining

l must
It is occasionally more convenient to mesh a volume in two stages, first with a coarse mes
then converting the coarse mesh to a fine mesh. The method used to convert a coarse he
to a fine hex mesh is known as hex dicing.

Hex dicing replaces each coarse element with a grid of smaller elements. The grid is gen
by cutting the element any number of times along each of its three primary axes. The nu
of fine elements in the grid depends on the number of cuts in each direction, and is known
refinement interval. For example, a hex with a refinement interval of 2 in each direction wi
replaced by a grid of 8 smaller elements. A simple example is shown in Figure 5-4.

Dicing may also be performed on a quad mesh. The result is a grid of quads replacing
coarse quad element.

In order for the resulting fine mesh to be conformal, groups of coarse mesh edges must ha
same refinement interval. Each group of dependent edges is known as a dicer sheet. Dicer
often include edges from several surfaces and volumes, so dependencies may pro
throughout the mesh. Dicer sheets are maintained automatically and enforce refinement in
dependencies.

Hex dicing is performed in 4 steps:

1) Initialize the dicer

Before dicing may be carried out, the dicer must first be initialized. This will create
necessary internal data needed to enforce constraints and correctly generate and store
mesh. To initialize the dicer for a given entity, use theInitialize Dicer command

All appropriate internal data will be generated. If there are dependencies between any
specified entities, or any entity for which the dicer has already been initialized, th
dependencies will automatically be reflected in the internal data with dicer sheets.

2) Set refinement intervals

After the dicer has been initialized, refinement intervals should be set. This will determine
number of fine edges replacing each coarse edge in a given dicer sheet, ultimately determ
the number of fine elements that will replace each coarse element. The refinement interva

Figure 5-4: Simple Dicing Example
126 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

dges

ing a

the
sing the

lied

h with

laced
ced.
f that

n of the
d and
ed, the
point,
ments.
shared
s.

very
these
be a positive integer, 1 or greater. A refinement interval of 1 will leave the coarse e
essentially unchanged, replacing 1 coarse edge with 1 fine edge.

Refinement intervals may be set on a geometric entity, on individual dicer sheets, or us
default value for all dicer sheets, using the commands:

{geom_list} DicerSheet Interval <interval>

DicerSheet <id> interval <interval>

DicerSheet Default Interval <interval>

The default dicer sheet interval is two.

3) Perform the dicing

Initializing the dicer for an entity will set the mesh scheme for that entity to Dice. Once
scheme has been set to Dice, the coarse mesh can be used to create the fine mesh u
command

Mesh {geom_list}

The fine mesh will be generated and will exist in memory, but at this point will not be app
to the entity that was diced.

4) Replace the coarse mesh with the fine mesh

Once the fine mesh exists in memory, you may replace the coarse mesh with the fine mes
the command

Replace Mesh {geom_list}

This command works only with surfaces and volumes. Each coarse element will be rep
with its grid of fine elements. As a result, the mesh on any child entities will also be repla
In other words, replacing the mesh of a volume will also replace the mesh on each o
volume’s surfaces and curves.

As a coarse mesh is replaced, any coarse elements that are still needed by another portio
mesh will not be destroyed. For example, assume that two volumes have been merge
shared a surface. If both volumes are meshed, and the mesh on one volume is then replac
shared coarse surface mesh will still exist because it is needed by the other volume. At this
the surface mesh is in an ambiguous state, simultaneously containing coarse and fine ele
If the second volume is then diced and its mesh is replaced, the coarse mesh on the
surface will then be deleted and the fine mesh will be conformal between the two volume

The Simplified Dicer Commands

The four step process normally used to dice a mesh may be simplified using commands
similar to those used for other meshing schemes. To use the simplified interface, follow
steps:

1) Set the mesh scheme to Dice for each entity to be diced, using a command such asVolume 1
Scheme Dice .

2) Set the interval on the entity, using a command such asVolume 1 Interval 3 . This will set
the refinement interval for the specified volumes.

3) Mesh the entity, using a command such asMesh Volume 1 .

4) Replace the mesh, using a command such asReplace Mesh Volume 1 .
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual127

CHAPTER 5: Mesh Generation

r to
verted

to the
oarse

the

urface
urface.
ies

BIT

es or

ntil
losed)
While the simplified interface still require four steps, the commands are familiar, simila
those used for other meshing schemes. The simplified commands are automatically con
to the appropriate dicing commands when the situation requires it.

Additional Dicing Commands

Several utilities have been developed to assist the user during the refinement process.

• Constraining Nodes to Geometry

The user can control whether refinement nodes of surface and curve meshes get moved
geometry, or whether their positions remain as a straight-line interpolation between c
nodes, via the following command:

Set Node Constraint {on|off}

If Node Constraint is on, which is the default, then nodes are constrained to lie on
geometry.

• Deleting a Fine Mesh

The fine nodes generated by the Dicer may be deleted using the command

Delete Fine Mesh {geom_list} [Propagate]

This command only works before using theReplace Mesh command. Any fine mesh entities
that rely on the deleted fine nodes are also deleted. For example, if the fine nodes on a s
are deleted, the fine mesh of any attached volume is deleted along with the nodes on the s
If the optionalPropagate keyword is used, the fine mesh will be deleted from any child entit
as well.

• Interaction with Dicer Sheets

Dicer sheets can be drawn, picked, highlighted, and listed, like other entities in the CU
model.

Equal
Applies to: Curves

Summary: Meshes a curve with equally-spaced nodes

Syntax:

{curve_list} scheme Equal

Discussion:

See “Interval Assignment” on page 117 for a description of how to set the number of nod
the node spacing on a curve.

HexToVoid
Applies to: Volumes

Summary: Meshes a volume building hexes from the exterior surfaces of the volume u
hexes can no longer be inserted. In general this scheme will not produce a complete (c
mesh for arbitrary volumes.
128 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

neral
ions.
oid is

of hex
e.

,

ixed-
ible in
erted

ry to
gonal,

the
amid

the
Syntax:

volume <volume_id_range> scheme hextovoid

Related Commands:

mesh volume <volume_id_range> [hexes <number_hexes>]

mesh volume <volume_id_range> [layers <number_layers>]

Discussion:

This algorithm is related to plastering, except that the exterior mesh remains fixed. In the ge
case, this will result in a partial all-hex mesh, and one or more unmeshed interior void reg
The algorithm currently successfully creates a partial mesh for most geometries. HexToV
most often used as part of the HexTet meshing algorithm discussed below.

A partial mesh can be created instead of meshing the complete geometry. The number
elements or the number of completed layers inward can be specified at the command lin

HexTet
Applies to: Volumes

Summary: Meshes a volume using theHexToVoid scheme until hex meshing terminates
finishes remaining void with schemeTetMesh.

Syntax:

volume <volume_id_range> scheme hextet

Related Commands:

Set hextet transition_type { two_triangle | four_triangle | pyramid }

Discussion:

This algorithm combines the HexToVoid and TetMesh schemes to create a fully meshed, m
element mesh. The HexToVoid algorithm is first invoked to create as many hexes as poss
the volume, working inward from the boundaries. The quadrilateral boundary is then conv
to a triangular boundary, and the remaining volume is filled with tetrahedra.

There are three methods currently supported to convert the quadrilateral void bounda
triangles. The two-triangle scheme subdivides each quadrilateral along its shortest dia
producing two boundary triangles. The four-triangle scheme inserts a center point on
quadrilateral and divides into four triangles. The pyramid scheme inserts a layer of pyr
elements on top of the quadrilaterals, resulting in a fully-conformal mesh.

Hole
Applies to: Annular Surfaces

Summary: Useful on annular surfaces to produce a “polar coordinates” type mesh (with
singulaity removed).

Syntax:

Surface <surface_id_range> Scheme Hole [rad_intervals <intervals>]
[bias <double>] [pair node <loop node-id> with node <loop node-id>]

Discussion:
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual129

CHAPTER 5: Mesh Generation

The
r of

nner
loop).

eter
dial
ar the
ries is

by a
with
er and

.

nected
of the
pable
A polar coordinate-like mesh with the singularity removed is produced with this scheme.
azimuthal coordinate lines will be of constant radius (unlike scheme map) The numbe
intervals in the azimuthal direction is controlled by setting the number of intervals on the i
and outer bounding loops of the surface (the number of intervals must be the same on each
The number of intervals in the radial direction is controlled by the user input,rad_intervals
(default is one). A bias may be put on the mesh in the radial direction via the input param
bias . A bias of 1 gives a uniform grading (default), a bias less than one gives smaller ra
intervals near the inner loop, while a bias greater than one gives smaller radial intervals ne
outer loop. The correspondance between mesh nodes on the inner and outer bounda
controlled with thepair node <loop node-id> with node <loop node-id> construct. One
id on the inner loop and one id on the outer loop should be given to connect the two nodes
radial mesh line. If this option is not exercised one risks sub-optimal node pairings,
possible negative Jacobians as the result. To use this option one must first mesh the inn
outer curve looops and determine the mesh node ids.

Mapping
Applies to: Surfaces, Volumes

Summary: Meshes a surface/volume with a structured mesh of quadrilaterals/hexahedra

Syntax:

{geom_list} Scheme Map

Discussion:

A structured mesh is defined as one where each interior node on a surface/volume is con
to 4/6 other nodes. Mappable surfaces contain four logical sides and four logical corners
map; each side can be composed of one or several geometric curves. Similarly, map

Figure 5-5: Example of Mesh Scheme Hole
130 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

everal
m are

es are
tched

s on
r for
t the
s; this

y. For

med
tion of
; see
n the
e user

shing
volumes have six logical sides and eight logical corners; each side can consist of one or s
geometric surfaces. For example, in Figure 5-6, the logical corners selected by the algorith

indicated by arrows. Between these vertices the logical sides are defined; these sid
described in Table 5-3. Interval divisions on opposite sides of the logical rectangle are ma

to produce the mesh shown in the right portion of Figure 5-6 (i.e. The number of interval
logical side 1 is equated to the number of intervals on logical side 3). The process is simila
volume mapping except that a logical hexahedron is formed from eight vertices. Note tha
corners for both surface and volume mapping can be placed on curves rather than vertice
allows mapping surfaces and volumes with less than four and eight vertices, respectivel
example, the mapped quarter cylinder shown in Figure 5-7 has only five surfaces.

The choice of where to put the four or eight corners of a mapped mesh is perfor
automatically, but in some cases produces undesirable results. The user has the op
providing guidance on where to put these corners by specifying surface vertex types
“Surface Vertex Types” on page 160 for a discussion of this topic. A related discussion o
constraints of the mapping and submapping surface schemes is presented to provide th
with background information about which geometries are most appropriate for these me
schemes (See “Surface Vertex Types” on page 160).

Figure 5-6: Scheme Map Logical Properties

Table 5-3: Listing of logical sides

Logical Side Curve Groups

Side 1 Curve 1

Side 2 Curve 2

Side 3 Curve 3, curve 4, curve 5

Side 4 Curve 6

3

4

5

1

6

SurfaceA

2

Logical
Corners

Logical
Corners

7

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual131

CHAPTER 5: Mesh Generation

roduce
lity and

e
ed, a
copy
tered:

uess
atch,
In some cases, namely for surfaces or volumes whose boundaries are concave, TFI can p
inverted meshes. In these cases, the mapped meshes can be smoothed to improve qua
yield a non-inverted mesh.

Mirror
Applies to: Surfaces

Summary: Mirrors the mesh from one surface to another

Syntax:

{surface_list} scheme Mirror [Source Surface <id> Source Curve <id>
Target Curve <id> Source Vertex <id> Target Vertex <id>
Source Edge <id> Target Edge <id> Source Node <id> Target Node <id>]
[Nosmoothing]

Discussion:

The mirror scheme is very similar to thecopy scheme and its users should refer to th
description of the options under that heading. In order to understand what is chang
discussion of the copy command is in order. Depending on what the user enters for the
scheme, the resulting mesh might be oriented one of two ways. For example, if the user en

Surface 1 scheme copy source surface 2 source vertex 5 target vertex 1

then the algorithm would match vertex 1 with vertex 5, but then would have to make a g
about how to match the curves. Lacking other pertinent data, the match will be a direct m
as is shown in Figure 5-8.

Figure 5-7: Volume mapping of a 5-surfaced volume
132 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

user
ay as
This default matching can be changed by specifying more information for matching, or the
can specify scheme mirror. The mirror scheme sets up the copying information in such a w
to reverse the default orientation of the target mesh, as is shown in Figure 5-8 (right).

Pave
Applies to: Surfaces

Summary: Automatically meshes a surface with an unstructured quadrilateral mesh.

Syntax:

{surface_list} Scheme Pave

Related Commands:

 [set] Paver Diagonal Scale <factor (Default = 0.9)>

 [set] Paver Grid Cell <factor (Default = 2.5)>

 [set] Paver LinearSizing {Off | ON}

 [set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

Discussion:

Paving (see reference [1]) allows the meshing of an arbitrary three-dimensional

surface with quadirlateral elements. The paver supports interior holes,

arbitrary boundaries, hard lines, and zero-width cracks. It also allows for

easy transitions between dissimilar sizes of elements and element size

variations based on sizing functions. Figure 5-9 shows the same surface

meshed with mapping (left) and paving (right) schemes using the same

discretization of the boundary curves.

When meshing a surface geometry with paving, clean-up and smoothing techniques

are automatically applied to the paved mesh. These methods improve the

Figure 5-8: Surface 1 copied/mirrored onto surface 2.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual133

CHAPTER 5: Mesh Generation
regularity and quality of the surface mesh. By default the paving method uses

its own smoothing methods that are not directly callable from CUBIT. Using

one of CUBIT’s callable smoothing methods in place of the default method

will sometimes improve mesh quality, depending on the surface geometry and

specifice mesh characteristics. If the paver produces poor element quality,

switching the smoothing scheme may help. This is done by the command:

 [set] Paver Smooth Method {DEFAULT | Smooth Scheme | Old}

When the "Smooth Scheme" is selected, the smoothing scheme specified for the

surface will be used in place of the paver’s smoother. See

“Mesh Smoothing” on page 161 for more information about the callable smoothing

schemes in CUBIT.

The smoothers flatten elements, such as inserted wedges, that have two edges

on the active mesh front. In meshes where this "corner" is a real corner,

flatten the element may give an unacceptable mesh. The following command

controls how much the diagonal of such an element is able to shrink.

 [set] Paver Diagonal Scale <factor (Default = 0.9)>

The range of for the scale factor is 0.5 to 1.0. A scale factor of 1.0 will

force the element to be a parallelagram as long as it is on the mesh front. A

value of 0.5 will allow the diagonal to be half its calculated lenght. The

element may became triangular in shape with the two sides on the mesh front

being colinear.

The paver divides the bounding box of a surface into a number of cells based

on the average length of an element. It uses these cells to speed intersection

checking of new element edges with the existing mesh. If both very long and

very short edges fall in the same area, it is possible that a long edge spans

the search region as is excluded from the intersection check when it does

intersect the new element. The following command allows the user to adjust

the size of the grid cells.
134 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation
 [set] Paver Grid Cell <factor (Default = 2.5)>

The grid cell factor is a multiplier applied to the average element size. This

gives the grid cell size. The surface’s bounding box is divided by this cell

size to determine the number of cells in each direction. A larger cell size

means each cell contains more nodes and edges. A smaller cell size means

each celll has fewer nodes and edges. A larger cell size forces the

intersection algorithm to check more potential intersections, which results

in long paver times. A smaller cell size gives the intersection algorithm

few edges to check (faster execution) but may result in missed intersections

where the ratio of long to short element edges is great. Increase this value

if the paver is missing intersections of elements.

The paving algorithm will automatically select a "linear" sizing function if

the ratio the largest element to the smallest is greater than 6.0 and no

other sizing function is specified for the surface. This is usually

desireable. When it is not, the user can change this behavior with the command:

 [set] Paver LinearSizing {Off | ON}

Setting paver linear sizing to "off" will keep the default behavior. The

size of the element will be based on the side(s) of the element on the mesh

front. For a discussion of sizing functions see Appendix E.

Figure 5-9: Map (left) and Paved (right) Surface Meshes
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual135

CHAPTER 5: Mesh Generation

ck-

pt it

 the shape
ere be at
sum of
emaining
Pentagon Primitive
Applies to: Surfaces

Summary: Automatically meshes a surface with primitive for 5-sided regions using a blo
structured quadrilateral mesh.

Syntax:

{surface_list} Scheme Pentagon

Related Commands:none

A new meshing primitive for 5-sided regions has been developed. This is similar to the triangle scheme, exce
uses 5 sides.

The pentagon scheme indicates the the region should be meshed as a pentagon. The scheme works best if
has 5 well-defined corners; however shapes with more corners can be meshed. The algorithm requires that th
least 10 intervals (2 per side) specified on the curves representing the perimiter of the surface. In addition, the
the intervals on any three connected sides must be at least two greater than the sum of the intervals on the r
two sides. The figure below shows several pentagon meshes.
136 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

mes

. This
emed
ugh it

rface
tures
tivity
Plastering
Applies to: Volumes

Summary: Research algorithm for generating all-hexahedral meshes for arbitrary 3D volu

Syntax:

{volume_list} Scheme Plaster

Related Commands:

Mesh {volume_list} [hexes <number_hexes>] [layers <number_layers>]

Discussion:

Plastering uses the discretized surface and projects elements into the interior of the volume
continues until the volume fills, with adjustments made to the exterior surface mesh as de
necessary. This algorithm is currently under development and not suggested for use altho
may be tested if desired. It should currently perform well for blocky structures where the su
mesh will form a valid boundary for an interior hex mesh. Some examples of these struc
are shown in Figure 5-10. These structures allow very straightforward hex element connec
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual137

CHAPTER 5: Mesh Generation

edges

of hex
when

ents

aving
duce
can’t

d form
and do not contain any irregular nodes (nodes that are shared by other than four element
in a given layer).

A partial mesh can be created instead of meshing the complete geometry. The number
elements or the number of completed layers inward can be specified at the command line
giving the mesh command by using the following syntax:

mesh {volume_list} [hexes <number_hexes>] [layers <number_layers>]

QTri
Applies to: Surfaces

Summary: Meshes surfaces with the paving algorithm, then converts the quadrilateral elem
into triangles.

Syntax:

{surface_list} Scheme QTri

QTri {surface_list}

Related Commands:

Set Node Constraint {On|Off}

Discussion:

QTri is used to mesh surfaces with triangular elements. It uses the quadrilateral p
algorithm first. The quads generated by paving are then split along the diagonal to pro
triangles. This command is used as a backup for the TriMesh command, when it fails or
be used.

The first command listed above sets the meshing scheme on a surface to QTri. The secon
sets the scheme and generates the mesh all in one step.

Figure 5-10: Plastering Examples
138 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

lit the
r than

unding
umber

the
ere

form
Using QTri on a surface that has already been meshed with quadrilateral elements will sp
existing elements into triangles. This feature allows you to use a meshing scheme othe
paving to generate the initial quads.

Sphere
Applies to: Volumes topologically equivalent to a sphere and having one surface.

Summary: Generates a radially-graded hex mesh on a spherical volume.

Syntax:

Volume <volume_id_range> Scheme Sphere [graded_interval <int>]
[az_interval <int>] [bias <val>] [fraction <val>]

Discussion:

This scheme generates a radially-graded mesh on a spherical volume having a single bo
surface. The mesh is a straightforward generalization of scheme Circle for surfaces. The n
of azimuthal intervals around the equator is controlled by theaz_interval input parameter. The
number of radial intervals in the outer portion of the sphere is controlled by
graded_interval input parameter. Azimuthal mesh lines in the outer portion of the sph
have constant radius. The inner portion of the volume mesh forms a cube. Thebias parameter
controls the amount of radial grading in the outer portion of the mesh (default=1 gives a uni
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual139

CHAPTER 5: Mesh Generation

re is

.

curve,
een

ner in
mesh). Thefraction parameter (between 0 and 1) determines what fraction of the sphe
occupied by the inner cube.

Stretch
Applies to: Curves

Summary: Permits user to specify the exact size of the first and/or last edges on a curve

Syntax:

Curve <id_range> scheme stretch
[first_size <double> [last_size <double> | stretch_factor <double>]]
[start_vertex <int>]

Related Commands:

{curve_list} Scheme Bias

{curve_list} Scheme Dualbias

Discussion:

This scheme allows the user to specify the exact length of the first and/or last edge on a
independent of the number of intervals. Intermediate edge lengths will vary smoothly betw
these input values, fitting in the required number of intervals. Meshes that are denser or fi

Figure 5-11: Example of Mesh Scheme Sphere
Z X
140 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

umber
w a
ss than

ly
mally

sides

iously,
pable
imple
try or
es that

-12.

orners
curves
the middle of the curve than at either end may be created by increasing or decreasing the n
of intervals. Unlike scheme bias and dualbias, edges lengths will not, in general, follo
geometric series. Reasonable size parameters should be input: e.g., the sizes must be le
the total length of the curve. Iflast_size or stretch_factor is input,first_size must also be
input. Bothlast_size andstretch_factor may not be input. The Stretch scheme current
does not work on periodic curves. The number of intervals on the curve are specified nor
with a size or interval command.

Submap
Applies to: Surfaces, Volumes

Summary: Produces a structured mesh for surfaces/volumes with more than 4/6 logical

Syntax:

{geom_list} Scheme Submap

Related Commands:

{geom_list} SubMap Smooth <on|off>

Discussion:

Submapping is a meshing tool based on the surface mapping capability discussed prev
and is suited for mesh generation on surfaces which can be decomposed into map
subsurfaces. This algorithm uses a decomposition method to break the surface into s
mappable regions. Submapping is not limited by the number of logical sides in the geome
by the number of edges. The submap tool, however is best suited for surfaces and volum
are fairly blocky or that contain interior angles that are close to multiples of 90 degrees.

An example of a volume and its surfaces meshed with submapping is shown in Figure 5

Like the mapping scheme, submapping uses vertex types to determine where to put the c
of the mapped mesh (see “Surface Vertex Types” on page 160). For surface submapping,
on the surface are traversed and grouped into “logical sides” by a classification of the curves

Figure 5-12: Quadrilateral and hexahedral meshes generated by submapping
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual141

CHAPTER 5: Mesh Generation

the
hich
g, the

n the

s the

nique

matic

ample
nt for
rvals.
etting
that
en to
odic

s and the
position in a local “i-j” coordinate system. Volume submapping uses the logical sides for
bounding surfaces and the vertex types to construct a logical “i-j-k” coordinate system, w
is used to construct the logical sides of the volume. For surface and volume submappin
sides are used to formulate the interval constraints for the surface or volume.

Figure 5-13 shows an example of this logical classification technique, where the edges o

front surface have been classified in the i-j coordinate system; the figure also show
submapped mesh for that volume.

After submapping has subdivided the surface and applied the mapped meshing tech
mentioned above, the mesh is smoothed to improve mesh quality1. Sometimes smoothing can
decrease the quality of the mesh; in this case the following command can turn off the auto
smoothing before meshing:

{geom_list} SubMap Smooth <on|off>

Surface submapping also has the ability to mesh periodic surfaces such as cylinders; an ex
of a periodic surface meshed with submapping is shown in Figure 5-14. The requireme
meshing these surfaces is that the top and bottom of the cylinder must have matching inte
For periodic surfaces, there are no curves connecting the top and bottom of the cylinder; s
intervals in this direction on the surface can be done by setting the periodic intervals for
surface (see “Interval Assignment” on page 117). No special commands need to be giv
submap a periodic surface, the algorithm will automatically detect this. Currently, peri
surfaces with interior holes arenot supported.

Volume submapping is limited to geometries that meet the following two criteria:

1) the bounding surfaces have been meshed with surface submapping or mapping, and

2) three, five, and six valent nodes occur only at junctions where surfaces meet.

Figure 5-13: SchemeSubmap Logical Properties

1. Because the decomposition performed by submapping is mesh based, no geometry is created in the proces

resulting interior mesh can be smoothed.

2

3

4

5

6

7

[+j]

[-i]

[+j]

[+i]

[-i][-j]

1

142 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

on or
s. The
Sweep
Applies to: Volumes

Summary: Produces an extruded hexahedral mesh for 2.5D volumes.

Syntax:

{volume_list} Scheme Sweep [Source [Surface] <id>] [Target [Surface] <id>]

Related Commands:

{volume_list} Sweep Smooth <on|off|winslow>

Discussion:

Thesweep algorithm can sweep general 2.5D geometries and can also do pure translati
rotations. Figure 5-15 displays swept meshes involving mapped and paved source surface

Figure 5-14: Periodic Surface Meshing with Submapping

Figure 5-15: Sweep Volume Meshing

Source
Surface

Target
Surface

Source
Surface

Target
Surface
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual143

CHAPTER 5: Mesh Generation

target

select
s of the
mesh
ctions

, some
aking
ep, etc.

rface
e the
strains
t, the

hing is
, and
ing

o
rmed
A third
hing

tion,
sweep algorithm can also handle multiple surfaces linking the source surface and the
surfaces. An example of this is shown in Figure 5-16.

If the source and target surfaces are not specified, then CUBIT attempts to automatically
them. Setting a sweep scheme on a volume automatically selects schemes for the surface
volume. Also, CUBIT automatically sets curve and vertex types in an attempt to make the
of the linking surfaces lead from a source surface to a target surface. These automatic sele
occasionally fail, in which case the user must manually select the source/target surfaces
source/target or linking surface meshing schemes, or some curve and vertex types. After m
some of these changes, the user should again attempt to set the volume scheme to swe

Occasionally the user must also adjust intervals along curves: in addition to the usual su
interval matching requirements, for a given pair of source/target surfaces, there must b
same number of hexahedral layers between them regardless of the path taken. This con
the number of edges along curves of linking surfaces. For example, in Figure 5-15 righ
number of intervals through the holes must be the same as along the outer shell.

In most cases swept meshes do not require smoothing, however in some cases smoot
required in each layer of the sweep. In practice, volumes are swept without layer smoothing
if the resulting mesh quality is poor, the user should turn on layer smoothing. The follow
command enables layer-smoothing:

{volume_list} Sweep Smooth <on|off|winslow>

The default setting for layer smoothing isoff. This means that no smoothing will be applied t
the layer meshes. If layer smoothing is turned on, a weighted winslow smooth is perfo
which smooths the layer and preserves biasing of the source mesh in so far as possible.
option is to set sweep smooth to winslow, which results in unweighted winslow smoot
which does not preserve biasing but sometimes result in better mesh quality.

Some helpful hints in using sweep:

1) Sweep runs faster if “sweep smooth” is off. If the geometry/surface mesh permits transla
rotation, or scaling then no smoothing should be needed.

Figure 5-16: Multiple Surface Sweep Volume Meshing

Target Surface

Linking Surfaces
144 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

s

ep
ue, a
s are
tically

ace is
the

sing
he

Check
l and
quent

not
ay

not

rget

new
n the
virtual
been

the
ultiple
some
2) The source and linking surfaces of the volume will be automatically meshed if the user ha
not already meshed them prior to meshing the volume with sweep. It is important to have high
quality meshes on the linking surfaces that are synchronized with one another to that swe
can succeed.For example, if the geometry suggests translation as the appropriate techniq
translated mesh will still not result from sweep unless the meshes on the volume surface
set up accordingly. If there are bad quadrilaterals on the surface meshes, sweep automa
aborts.

3) The target may be meshed by the user or that task may be left to sweep. If the target surf
meshed prior to invoking sweep, then the target mesh must be topologically equivalent to
set of source surface meshes.

4) Biasing of the curve meshes in the direction of the sweep is preserved by the sweep. Bia
of the source mesh boundary is not preserved under a sweep. To accomplish the latter, t
user must bias the target surface boundary.

5) The most common error message generated by sweep reads “Target partially reached.
intervals on Linking Surfaces.” The error-trap that provokes this message is quite genera
may occur for a number of reasons, not necessarily the reason given. One of the most fre
causes for this message is a geometry with a thru-hole with the linking surfaces having a
different number of intervals on the inside vs. the outside of the volume.

6) If either or both the source and/or target surfaces are omitted from the scheme setting
command, CUBIT will determine source and target surfaces (see “Automatic Scheme
Selection” on page 157). Sweeping can be further automated using the “sweep groups”
command.

7)Limitations: Not all geometries are sweepable. Even some that appear sweepable may
be, depending on the linking surface meshes. Highly curved source and target surfaces m
not be meshable with the current sweep algorithm. Multiple target surfaces are currently
allowed.

Many-to-Many, or Multisweeping

Applies to: Sweepable volumes with multiple target surfaces

Summary: Extends the sweeping algorithms to include volumes with more than one ta
surface.

Syntax:

Related Commands:

[set] multisweep smoothing {ON|off}

Discussion:

New to CUBIT version 4.0 is the ability to mesh volumes with multiple target surfaces. The
multisweep algorithm works by recognizing possible mesh and topology conflicts betwee
source and target surfaces and working to resolve these conflicts through the use of the
geometry capabiliies in CUBIT. Figure 5-17 shows some examples of volumes which have
meshed with the multisweep algorithm.

The multisweep algorithm is simply an addition to the regular sweeping algorithms,
multisweep capabilities are accessed by simply specifying scheme sweep and placing m
target surfaces in the target list. Also, the autoscheme selection algorithm may assign
volumes to be multiswept.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual145

CHAPTER 5: Mesh Generation

that
esh
th the
during

, it is
other
eme
When setting sizes on volumes which are to be multiswept, it is important to understand
any mesh placed on the volume by a sweeping algorithm is simply a projection of the m
placed on the source surfaces. It is, therefore, important that similar sizes be placed on bo
source and target surfaces to prevent any resulting conflicts when the meshes are aligned
multisweeping and the actual volume meshing.

Because the multisweep algorithm may alter some surface geometry on the volume
generally a good idea to attempt to mesh the multisweep volumes first before meshing any
volumes. Also note that this geometry modification may also require some additional sch
selection and interval matching on adjoining volumes.

TetMesh, TetINRIA, TetMSC
Applies to: Volumes

Summary: Automatically meshes a volume with an unstructured tetrahedral mesh.

Syntax:

 {volume_list} Scheme {TetMesh | TetINRIA | TetMSC}

Related Commands:

 [set] TriMesher {AMG | MSC | INRIA | Simulog}

Discussion:

The "TetMesh" scheme fills and arbitrary three-dimensional volume with

tetrahedral elements. The surfaces are first trianglulated with either one

Figure 5-17: Multiswept volume mesh
146 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

ard
of the triangle schemes (TriMesh, TriAdvance, TriMSC) or a qualrilateral

scheme with the qualrilaterals split in two triangles. One or two algorithms

are available for generating the tetrahedral mesh.

1. The Simulog/INRIA tetrahedron mesher is included in CUBIT. This is a

robust and fast tetrahedron mesher developed in France at INRIA and

distributed by Simulog. Figure 5-18 shows a part filled with tetrahedra by

this algorithm. You can force this scheme for a volume by giving the

command:

 {volume_list} Scheme TetINRIA

2. The MSC/AMG Aries tetrahedron mesher may be available. This is an

optional component and therefore, not available in all CUBIT installations.

You can force this scheme for a volume by giving the command:

 {volume_list} Scheme TetMSC

The default tetrahedron meshing scheme is "TetINRIA" since it is included

in all versions of CUBIT. The default algorithm may be changed with the

command:

 [set] TetMesher {AMG | MSC | INRIA | Simulog}

Setting the tetrahedron mesher to "AMG" or "MSC" will select the MSC/AMG Aries

tetrahedron mesher as the default algorithm. This is optional software and

requires a separate licence, which may not be available. Setting the

tetrahedron mesher to "INRIA" or "Simulog" selects that algorithm as the

default. All volumes with scheme "TetMesh" will use the Simulog/INRIA

algorithm to generate the tetrahedral volume mesh from that point foreward.

Tetrahedron
Applies to: Volumes

Summary: Meshes a four “sided” object with hexahedral elements using the stand
tetrahedron primitive.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual147

CHAPTER 5: Mesh Generation

itive

bined
Syntax:

{volume_list} Scheme Tetrahedron [combine surface <range>] [combine
surface <range>] [combine surface <range>] [combine surface <range>]

Discussion:

Thetetrahedron scheme is used to hex mesh volumes with a standard primitive. The prim
assumes that each of the four surfaces have been meshed with theTriangle meshing scheme. If
more than four surfaces form the tetrahedron geometry, the logical sides can be com
through thecombine option.

THex
Applies to: Volumes

Summary: Converts tetrahedral elements into hexahedral elements

Syntax:

THex {volume_list}

Related Commands:

Set Node Constraint {On|Off}

Discussion:

Figure 5-18: Tetrahedral mesh generated with scheme TetMesh

Z

YX
148 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

ents,
then

time,

g

The THex command splits each tetrahedral element in a volume into four hexahedral elem
as shown in Figure 5-20. This is done by splitting each edge and face at its midpoint, and
forming connections to the center of the tet.

Note: When THexing merged volumes, all of the volumes must be THexed at the same
in a single command. Otherwise, meshes on shared surfaces will be invalid.

Figure 5-20: Conversion of a tetrahedron to four hexahedra, as performed by the THex
algorithm.

An example of the THex algorithm is shown in Figure 5-21.

Transition
Applies to: Surfaces

Summary: Produces a specified transition mesh for specific situations

Syntax:

{surface_list} Scheme Transition {Triangle | Half_circle | Three_to_one |
Two_to_one | Convex_corner | Four_to_two} [Source Curve <id>]
[Source Vertex <id>]

Discussion:

Figure 5-19: Sphere octant hex meshed with scheme Tetrahedron, surfaces meshed usin
scheme Triangle
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual149

CHAPTER 5: Mesh Generation

esh
are

des of

ee on

surface

surface

nvex
rface.

surface

les for

this

the
The transition scheme supplies a set of transition primitives which serve to transition a m
from one density to another across a given surface. The six transition sub-types
demonstrated here.

Scheme Transition Triangle (see Figure 5-22) creates four quads in a triangle that has si
three, two, and one intervals.

Scheme Transition Half_circle (see Figure 5-22) creates three intervals on the flat and thr
the curved part of the half-circle, then creates four quads in the surface.

Scheme Transition Three_to_one (see Figure 5-23) creates four quads on a rectangular
that has intervals of three, one, one, and one on its sides.

Scheme Transition Two_to_one (see Figure 5-23) creates three quads on a rectangular
that has intervals of two, two, one and one on its sides

Scheme Transition Convex_corner (see Figure 5-24) takes a six-sided block with a co
corner and connects that inner corner to the opposite one, creating two quads on the su

Scheme Transition Four_to_two (see Figure 5-24) creates seven quads on a rectangular
that has intervals of four, two, two, and two on its sides.

The user also has the option of specifying a source curve and/or a source vertex. The ru
these specifications are as follows:

If both a curve and vertex are specified, the vertex must be on the curve.

The Convex_corner sub-type does not allow a source curve.

The Four_to_two sub-type does not allow a source vertex.

The source curve will be the curve that will be given the fewest intervals.

The source vertex will specify which corner will be used for the scheme, in cases where
makes sense (primarily in the Triangle, and Two_to_one cases).

If none of the optional information is given, the program will assign the source curve to be
shortest one on the face, in keeping with the most probable desires of the user.

Figure 5-21: A cylinder before and after the THex algorithm is applied.
150 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation
Triangle
Applies to: Surfaces

Summary: Produces a triangle-primitive mesh for a surface with three logical sides

Syntax:

{surface_list} Scheme Triangle

Discussion:

Figure 5-22: Scheme Transition Triangle and Half_circle

Figure 5-23: Scheme Transition Three_to_one and Two_to_one
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual151

CHAPTER 5: Mesh Generation

ion of
eshed
icely

side)
tervals
n the

rface.

these
ngle.
e that
s, and

place
d, the
Thetriangle scheme indicates that the region should be meshed as a triangle. The definit
the triangle is general in that surfaces containing 3 natural corners can often be m
successfully with this algorithm. For instance, the surface of a sphere octant is handled n
by the triangle primitive. The algorithm requires that there be at least 6 intervals (2 per
specified on the curves representing the perimeter of the surface and that the sum of the in
on any two of the triangle’s sides be at least two greater than the number of intervals o
remaining side. Figure 5-19 on page 149 illustrates a triangle mesh on a 3D surface.

Trimap
Applies to: Surfaces

Summary: Places triangle elements at some vertices, and map meshes the remaining su

Syntax:

{surface_list} Scheme Trimap

Related Commands:

{surface_list} {vertex_list} Type {triangle|notriangle}

Discussion:

Some surfaces contain bounding curves which meet at a very acute angle. Meshing
surfaces with an all-quadrilateral mesh will result in a very skewed quad to resolve that a
In some cases, this is a worse result than simply placing a triangular element to resolv
angle. This scheme resolves this situation by placing a triangular element at such place
filling the remainder of the surface with a mapped mesh.

The algorithm computes whether a triangular element is necessary, along with where to
that element, automatically. To override the choice of where triangular elements are use
following command can be used:

{surface_list} {vertex_list} Type {triangle|notriangle}

Figure 5-24: Scheme Transition Convex_corner and Four_to_two
152 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation
TriMesh, TriAdvance, TriMSC

Applies to: Surfaces

Summary: Automatically meshes a surface with an unstructured trianglular mesh.

Syntax:

 {surface_list} Scheme {TriMesh | TriAdvance | TriMSC}

Related Commands:

 [set] TetMesher {AMG | MSC | INRIA | Simulog}

Discussion:

The "TriMesh" scheme fills an arbitrary three-dimensional surface with

triangle elements. Three algorithms are available for this purpose.

1. The MSC/AMG Aries tetrahedron mesher has a surface meshing capability.

This is an optional component and therefore, not available in all CUBIT

installations. You can force this scheme for a surface by giving the command:

 {surface_list} Scheme TriMSC

2. An advancing front algorithm is part of the standard CUBIT distribution.

It currently allows for holes in the surface and transitions between

dissimilar element sizes. It can use a sizing function like the pave scheme if

one is defined for the surface. Future development will add hard lines to

this scheme’s capabilities. This scheme will be the default "TriMesh" scheme

in the future. You can force this scheme for a surface by giving the command:

{surface_list} Scheme TriAdvance

3. The current default scheme is "QTRI." The "QTRI" scheme first paves the
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual153

CHAPTER 5: Mesh Generation
surface and then cuts the quadrilateral elements in half to form triangles.

Figure 5-25 shows the default "QTRI" mesh (top) and the advancing front mesh

(bottom) for the same discretization of the boundary curves.

The default algorithm used by scheme "TriMesh" may be changed with the

following command:

[set] TriMesher {AMG | MSC | Advancing Front}

Setting the triangle mesher to "AMG" or "MSC" will select the MSC/AMG Aries

tetrahedron mesher as the default algorithm. This is optional software and

requires a separate licence, which may not be available. Setting the triangle

mesher to "Advancing Front" selects that algorithm as the default. All

surfaces with scheme "TriMesh" will use the advancing front algorithm to

generate the triangular surface mesh from that point foreward.
154 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

f the
Tripave
Applies to: Surfaces

Summary: Places triangle elements at some vertices, and paves the remaining surface.

Syntax:

{surface_list} Scheme Tripave

Related Commands:

{surface_list} {vertex_list} Type {triangle|notriangle}

Discussion:

Similar to the Trimap algorithm, but uses paving instead of mapping to fill the remainder o
surface with quadrilaterals.

Figure 5-25: Meshes generated with scheme QTRI (top) and TriAdvamce (bottom)

Z

Y

X

Z

X

Document Version 4/18/00 CUBIT Version 4.0 Reference Manual155

CHAPTER 5: Mesh Generation

eased
l for

edra
ed in
esh

h,
e then
primal
eshes
Whisker Weaving
Applies to: Volumes

Summary: Research algorithm for all-hexahedral meshing of arbitrary 3D volumes

Syntax:

{volume_list} Scheme Weave

Related Commands:

Pillow {volume_list}

{geom_list} Mesh [Fixed|Free]

Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Discussion:

Whisker Weaving is a volume meshing algorithm currently being researched and is not rel
for general use. However, daring users may find the current form of the algorithm usefu
mostly-convex geometries.

Whisker Weaving holds the promise of being able to fill arbitrary geometries with hexah
that conform to a fixed surface mesh. The algorithm is based on rich information contain
the Spatial Twist Continuum (STC), which is the grouping of the dual of an all-hexahedral m
into an arrangement of surfaces calledsheets. Given a bounding quadrilateral surface mes
Whisker Weaving constructs sheets advancing from the boundary inward. The sheets ar
modified so that the arrangement dualizes to a well defined hexahedral mesh. Once the
hex-mesh is generated, interior node positions are generated by smoothing. Examples of m
generated using the whisker weaving algorithm are shown in Figure 5-26.

Whisker Weaving Basic Commands

The basic steps for meshing a volume with Whisker Weaving are the following:

• Set the meshing scheme for the volume to weave,

{volume_list} Scheme Weave

• Mesh the volume, which generates hexes,

Mesh {volume_list}

• Pillow the volume to remove certain additional degenerate hexes,

Pillow {volume_list}

Figure 5-26: Some simple Whisker Weaving meshes with good quality.
156 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

esh.
ume
ing a

setting

ining
 here.

t the
which

al and
heme

. For
heme
to call
tervals
if the
aving,
rval
d then
ize of
es the
ction.
urface

shing
paving
nterval
• and typically, smooth the mesh to improve quality, e.g.

{volume_list} Smooth Scheme Optimize Jacobian 1.05

Smooth {volume_list}

Whisker Weaving Options

Currently, Whisker Weaving relies on being able to perturb the bounding quadrilateral m
However, a bounding surface’s mesh will not be changed if it is contained in another vol
that is already meshed. The user may also explicitly prevent Whisker Weaving from chang
bounding mesh byfixing it with the following command:

{geom_list} Mesh [Fixed|Free]

The user may select an optional control strategy that doesn’t change the surface mesh by
AutoWeaveShrink off, and settingStatelist on with the following commands:

Set AutoWeaveShrink [on|off]

Set Statelist [on|off]

Numerous developer commands are available for stepping through the algorithm, exam
results, and toggling options. These are available via the online help but are not detailed

▼ Automatic Scheme Selection
For volume and surface geometries the user may allow CUBIT to automatically selec
meshing scheme. Automatic scheme selection is based on several constraints, some of
are controllable by the user. The algorithms to select meshing schemes will use topologic
geometric data to select the best meshing tool. The command to invoke automatic sc
selection is:

{geom_list} Scheme Auto

Specifically for surface meshing, interval specifications will affect the scheme designation
this reason it is recommended that the user specify intervals before calling automatic sc
selection. If the user later chooses to change the interval assignment, it may be necessary
scheme selection again. For example, if the user assigns a square surface to have 4 in
along each curve, scheme selection will choose the surface mapping algorithm. However
user designates opposite curves to have different intervals, scheme selection will choose p
since this surface and its assigned intervals will not satisfy the mapping algorithm’s inte
constraints. In cases where a general interval size for a surface or volume is specified an
changed, scheme selection will not change. For example, if the user specified an interval s
1.0 a square 10X10 surface, scheme selection will choose mapping. If the user chang
interval size to 2.0, mapping will still be chosen as the meshing scheme from scheme sele
If a mesh density is not specified for a surface, a size based on the smallest curve on the s
will be selected automatically.

Notes: Surface Auto Scheme Selection
Surface scheme selection will choose between Pave, Submap, Triangle, and Map me
schemes, and will always result in selecting a meshing scheme due to the existence of the
algorithm, a general surface meshing tool (assuming the surface passes the even i
constraint; see “Interval Matching” on page 119).
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual157

CHAPTER 5: Mesh Generation

to each
ce can
eshing
e
er can
et the

r can
heme

rees as
g and
at are
osen

voked
efore
lume

r
n.

ional
t,

ic 3D
shing
user.

st, the
odel
heme

ws the
porting

ands
Surface auto scheme selection uses an angle metric to determine the vertex type to assign
vertex on a surface; these vertex types are then analyzed to determine whether the surfa
be mapped or submapped (see “Surface Vertex Types” on page 160). Often, a surface’s m
scheme will be selected asPave or Triangle when the user would prefer the surface to b
mapped or submapped. The user can overcome this by several methods. First, the us
manually set the surface scheme for the “fuzzy” surface. Second, the user can manually s
“vertex types” for the surface (see “Surface Vertex Types” on page 160). Third, the use
increase the angle tolerance for determining “fuzziness.” The command to change sc
selection’s angle tolerances is:

[Set] Scheme Auto Fuzzy Tolerance {value} (value in degrees)

The acceptable range of values is between 0 and 360 degrees. If the user enters 360 deg
the fuzzy tolerance, no fuzzy tolerance checks will be calculated, and in general mappin
submapping will be chosen more often. If the user enters 0 degrees, only surfaces th
“blocky” will be selected to be mapped or submapped, and in general paving will be ch
more often.

Notes: Volume Auto Scheme Selection
When automatic scheme selection is called for a volume, surface scheme selection is in
on the surfaces of the given volume. Mesh density selections should also be specified b
automatic volume scheme selection is invoked due to the relationship of surface and vo
scheme assignment.

Volume scheme selection chooses betweenMap, SubmapandSweepmeshing schemes. Othe
schemes can be assigned manually, either before or after the automatic scheme selectio

Volume scheme selection is limited to selecting schemes for 2.5D geometries, with addit
tool limitations (e.g. Sweep can currently only sweep from several sources to a single targenot
multiple targets; see “Sweep” on page 143); this is due to the lack of a completely automat
hexahedral meshing algorithm. If volume scheme selection is unable to select a me
scheme, the mesh scheme will remain as the default and a warning will be reported to the

Volume scheme selection can fail to select a meshing scheme for several reasons. Fir
volume may not be mappable and not 2.5D; in this case, further decomposition of the m
may be necessary (see “Geometry Decomposition” on page 73). Second, volume sc
selection may fail due to improper surface scheme selection. Volume schemes such asMap,
Submap,and Sweeprequire certain surface meshing schemes, as mentioned previously.

General Notes
In general automatic scheme selection reduces the amount of user input. If the user kno
model consists of 2.5D meshable volumes, three commands to generate a mesh after im
or creating the model are needed. They are:

volume all size <value>

volume all scheme auto

mesh volume all

The non-trivial, academic model shown in Figure 5-27 was meshed using these three comm

Scheme Firmness
158 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

efault
ect the
logous

/he is
mand
e user,

change

ortant
n this

gically
there
; these
lly. For

model
each
Meshing schemes may be selected through three different approaches. They are: d
settings, automatic scheme selection, and user specification. These methods also aff
scheme firmness settings for surfaces and volumes. Scheme firmness is completely ana
to interval firmness (see “Interval Firmness” on page 117).

Scheme firmness can be set explicitly by the user using the command

{geom_list} Scheme {Default | Soft | Hard}

Scheme firmness settings can only be applied to surfaces and volumes.

This may be useful if the user is working on several different areas in the model. Once she
satisfied with an area’s scheme selection and doesn’t want it to change, the firmness com
can be given to hard set the schemes in that area. Or, if some surfaces were hard set by th
and the user now wants to set them through automatic scheme selection then she/he may
the surface’s scheme firmness tosoft or default .

▼ Mesh-Related Topics
There are several topics not related to any one specific mesh scheme, but which are imp
to understand before using CUBIT to produce meshes. These topics are described i
section.

Grouping Sweepable Volumes
Swept meshing relies on the constraint that the source and target meshes are topolo
identical or the target surface is unmeshed (see “Sweep” on page 143.) This results in
being dependencies between swept volumes connected through non-manifold surfaces
dependencies must be satisfied before the group of volumes can be meshed successfu
example, if the model was a series of connected cylinders, the proper way to mesh the
would be to sweep each volume starting at the top (or bottom) and continuing through
successive connected volume.

Figure 5-27: Non-trivial model meshed using automatic scheme selection(part of the model is
not shown in order to reveal the internal structure of the model).
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual159

CHAPTER 5: Mesh Generation

s, the
uping
which
esulting

the

. The
mings
when

tor of

uce
at the

or the
the

strates
With larger models and with models that contain volumes that require many source surface
process of determining the correct sweeping ordering becomes tedious. The sweep gro
capability computes these dependencies and puts the volumes into groups, in an order
represents those dependencies. The volumes are meshed in the correct order when the r
group is meshed.

To compute the sweep dependencies, use the command:

Group Sweep Volumes

This will create a group named “sweep_groups”, which can then be meshed using
command:

Mesh sweep_groups

FullHex versus NodeHex Representation
CUBIT has two different internal representations of hexes: FullHexes and NodeHexes
NodeHex is a lighter weight datastructure, but occasionally nodeset and sideset shortco
can be overcome by using FullHexes. The user can select which type of hexes get created
generating or importing a volume mesh with the following command:

Set FullHex Use {on|off}

Using the FullHex representation increases the memory used to store a mesh by a fac
approximately five.

Surface Vertex Types
Several meshing algorithms in CUBIT “classify” the vertices of a surface or volume to prod
a high quality mesh. This classification is based on the angle between the edges meeting
vertex, and helps determine where to place the corners of the map, submap or triangle,
triangles in the trimap or tripave. For example, a surface mapping algorithm must identify
four vertices of the surface that best represent the surface as a rectangle. Figure 5-28 illu

Figure 5-28: Angle Types for Mapped and Submapped Surfaces: An End vertex is contained
in one element, a Side vertex two, a Corner three, and a Reversal four.

END

REVERSAL

CORNER

SIDE

(~90 deg.)

(~360 deg.)

(~180 deg.)

(~270 deg.)
160 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

etween

cified
h or a

ent for

re 5-
pes of

and:

rs by
s are
ght”
heme
must

The
es of

can

nging
ty of
ecific
here
the vertex angle types for mapped and submapped surfaces, and the correspondence b
vertex types and the placement of corners in a mapped or submapped mesh.

The surface vertex type is computed automatically during meshing, but can also be spe
manually. In some cases, choosing vertex types manually results in a better quality mes
mesh that is preferable to the user. Vertex types are set using the following command:

{surface_list} {vertex_list} Type {end|side|corner|reversal}

Note that a vertex may be connected to several surfaces and its classification can be differ
each of those surfaces.

The influence of vertex types when mapping or submapping a surface is illustrated in Figu
29. There, the same surface is submapped in two different ways by adjusting the vertex ty
ten vertices.

The user may specify the maximum allowable angle at a corner with the following comm

Set {Corner|End} Angle <degrees>

The user may also give greater priority to one automatic selection criteria over the othe
changing the following absolute weights. The “corner weight” considers how large angle
at corners. The “turn weight” considers how L-shaped the surface is. The “interval wei
considers how much intervals must change. The “large angle weight” affects only auto-sc
selection: surfaces with a large angle will be paved instead. Each weight’s default is 1 and
be between 0 and 10. The bigger a weight the more that criteria is considered.

Set Corner Weight <value>

Set Turn Weight <value>

Set Interval Weight <value>

Set Large Angle Weight <value>

An illustration of a mesh produced by the submapping algorithm is shown in Figure 5-29.
meshes produced by submapping on the left and right result from adjusting the vertex typ
the eight vertices shown.

Preview Mesh

It is sometimes useful to view the nodal locations on curves graphically before meshing (which
take considerably more time). The command to do this is:

Preview Mesh {body|volume|surface|curve|vertex} <id_range>

To clear the display of the temporary nodes, simply issue a “display” command.

▼ Mesh Smoothing
After generating the mesh, it is sometimes necessary to modify that mesh, either by cha
the positions of the nodes or by removing the mesh altogether. CUBIT contains a varie
mesh smoothing algorithms for this purpose. Node positions can also be fixed, either by sp
node or by geometry entity, to restrict the application of smoothing to non-fixed nodes. T
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual161

CHAPTER 5: Mesh Generation

mesh.

-step
rms the
hms
ly to
metry

the

y the
hes is

on a
or by

d

are also some procedures that can be done before meshing to increase the quality of the
See the section on Mesh Quality for more information.

Mesh smoothing in CUBIT operates in a similar fashion to mesh generation, i.e. it is a two
process whereby a smooth scheme is chosen and set, then a smooth command perfo
actual smoothing. Like meshing algorithms, there is a variety of smoothing algorit
available, some of which apply to multiple geometry entity types and some which only app
one specific type (these algorithms are described below.) To smooth the mesh on a geo
entity, the user must perform the following steps:

1) Set the smooth scheme for the object, along with any scheme-specific information, using
smooth scheme setting commands described below.

2) Smooth the object, using the command:

Smooth {geom_list}

Groups of entities may be smoothed, by smoothing a group or a body.

If a Body is specified, the volumes in that Body are smoothed. If a Group is specified, onl
volume meshes within these groups aresmoothed - no smoothing of the suface mes
performed.

Typically, smoothing algorithms move nodes in order to improve the quality of the mesh
given geometry entity. Smoothing is terminated either by satisfying a smoothing tolerance

Figure 5-29: Influence of vertex types on submap meshes; vertices whose types are change
are indicated above, along with the mesh produced; logical submap shape shown below.

Mesh & Vertex Types

C C

EEE E

S S

S

S S

S
SS

E E

Mesh & Vertex Types

Logical submap shape Logical submap shape
162 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

et by

cal
may
ser but

)^(1/

ain

ll

esh,

ard the
].

sh
.

performing the maximum number of smoothing iterations. The smooth tolerance may be s
the user:

[Set] Smooth Tolerance <tol>

The value<tol> tells the smoother to stop when node movement is less than tol * the lo
minimum edge length. The default value for tol is 0.05. The maximum number of iterations
be set by the user: For volumes, the smooth tolerance and iterations may be set by the u
they are presently ignored by the smoothers:

Volume Smooth Tolerance <tol>

Volume Smooth Iterations <iters>

The default values are 0.05 for the tolerance and 18 * (number of hexes / number of nodes
3)

Where used in the smooth schemes below, theFree keyword permits the nodes lying on the
bounding entities to “float” along those entities; without this keyword, boundary nodes rem
fixed.

Nodal positions may befixed so that no smoothing scheme, either implicit or explicit, wi
move them, with the following command:

{geom_list} Node Position [Fixed|Free]

The following command does not fix nodal positions, but does fix the connectivity of the m
preventing certain volume schemes from changing the bounding mesh:

{geom_list} Mesh [Fixed|Free]

The specific smooth schemes available in CUBIT are now described in detail.

Smooth Scheme: Centroid Area Pull
Applies to: Surface Meshes

Summary: Attempts to create elements of equal area

Syntax:

{surface_list} Smooth Scheme Centroid Area Pull [Free] [Global]

Discussion:

This smooth scheme attempts to create elements of equal area. Each node is pulled tow
centroids of adjacent elements by forces proportional to the respective element areas [8

Using theglobal keyword when smoothing a group of surfaces will allow smoothing of me
on shared curves to improve the quality of elements on both surfaces sharing that curve

Smooth Scheme: Equipotential
Applies to: Volume Meshes

Summary: Attempts to equalize the volume of elements attached to each node

Syntax:

{volume_list} Smooth Scheme Equipotential [Free]

Discussion:
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual163

CHAPTER 5: Mesh Generation

o
nodal

aped
r to

ement
cian
ential

length
node
nds to
pping
ave

oved
imum
urve

sh
.

a of
ve good
This smoother is a variation of theEquipotential [8] algorithm that has been extended t
manage non-regular grids [9]. This method tends to equalize element volumes as it adjusts
locations. The advantage of the equipotential method is its tendency to “pull in” badly sh
meshes. This capability is not without cost: the equipotential method may take longe
converge or may be divergent. To impose an equipotential smooth on a volume, each el
must be smoothed in every iteration—a typically expensive computation. While a Lapla
method can complete smoothing operations with only local nodal calculations, the equipot
method requires complete domain information to operate.

Smooth Scheme: Laplacian
Applies to: Curve, Surface, and Volume meshes

Summary: Tries to make equal edge lengths

Syntax:

{geom_list} Smooth Scheme Laplacian [Free] [Global]

Discussion:

The length-weighted laplacian smoothing approach calculates an average element edge
around the mesh node being smoothed to weight the magnitude of the allowed
movement [8]. Therefore this smoother is highly sensitive to element edge lengths and te
average these lengths to form better shaped elements. However, similar to the ma
transformations, the length-weighted Laplacian formulation has difficulty with highly conc
regions.

Currently, the stopping criterion for curve smoothing is 0.005, i.e., nodes are no longer m
when smoothing moves the node less than 0.005 * the minimum edge length. The max
number of smoothing iterations is the maximum of 100 and the number of nodes in the c
mesh. Neither of these parameters can currently be set by the user.

Using theglobal keyword when smoothing a group of surfaces will allow smoothing of me
on shared curves to improve the quality of elements on both surfaces sharing that curve

Smooth Scheme: Optimize Area
Applies to: Surface meshes

Summary: Produces smooth variation of element across a mesh

Syntax:

{surface_list} Smooth Scheme Optimize Area

Discussion:

SchemeOptimize Area generates a mesh by minimizing the sum of the squares of the are
the local elements attached to a node. These meshes often have positive jacobians and gi
gradations of element area across a mesh, but are not smooth in an elliptic sense.

Smooth Scheme: Optimize Condition Number
Applies to: Surface and Volume meshes

Summary: Optimizes the mesh condition number to produce well-shaped elements.
164 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

ments.
sible.
(run

r then
eme is

i.e.,
ocally-

ke
1.05

ards

ative
ith no
Syntax:

Surface <surface_id_range> Smooth Scheme Optimize Condition
Number Fixed
Volume <volume_id_range> Smooth Scheme Optimize Condition
Number Fixed

Related Commands:

Optimize Untangle

Discussion:

Condition Number measures the distance of an element from the set of degenerate ele
Optimization of the Condition number produces smooth, well-shaped elements when pos
Condition number optimization requires that the initial mesh contain no negative Jacobians
smooth scheme optimize untangle as a pre-processor). Optimization of Condition Numbe
guarantees that the optimized mesh will contain no negative Jacobians. Currently, the sch
being modified to extend the guarantee to the boundary of the mesh.

Smooth Scheme: Optimize Jacobian
Applies to: Volume meshes

Summary: Produces locally-uniform hex meshes by optimizing element Jacobians

Syntax:

{volume_list} Smooth Scheme Optimize Jacobian [param]

Discussion:

The Optimize Jacobian method minimizes the sum of the squares of the Jacobians (
volumes) attached to the smooth node. Meshes smothed by this means tend to have l
uniform hex volumes.

The parameter<param> has a default value of 1, meaning that the method will attempt to ma
local volumes equal. The parameter, which should always be between 1 and 2 (with
recommended), can be used to sacrifice local volume equality in favor of moving tow
meshes with all-positive Jacobians.

Smooth Scheme: Optimize Untangle
Applies to: Surface and Volume meshes

Summary: Untangle a mesh to remove negative Jacobian elements.

Syntax:

Surface <surface_id_range> Smooth Scheme Optimize
Untangle Fixed <double>

Volume <volume_id_range> Smooth Scheme Optimize
Untangle Fixed <double>

Related Commands:

Optimize Condition Number

Discussion:Occasionally one of the meshing schemes will produce elements having neg
Jacobians. Optimize untangle will automatically move mesh nodes to produce meshes w
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual165

CHAPTER 5: Mesh Generation

moved.
th (to

alue
ses it
se the

mount
e for
mooth

and
pping
convex
tured

shing,
ntity
negative Jacobian elements. Nodes connected to positive Jacobian elements are not
Although the resulting mesh may have no negative Jacobians, the mesh will not be smoo
further improve the mesh useOptimize Condition Number). The optional input parameter
<double> tells the untangler to halt when the minimum scaled Jacobian is roughly the v
of <double> . The default value of the parameter is 0 and the range is -1 to 1. In some ca
is not possible to make the minimum scaled Jacobian greater than <double>, in which ca
optimizer does the best it can before exiting gracefully.

Smooth Scheme: Randomize
Applies to: Curve, Surface, and Volume meshes

Summary: Randomizes the placement of nodes on a geometry entity

Syntax:

{geom_list} Smooth Scheme Randomize [percent]

Discussion:

This scheme will create non-smooth meshes. If a percent argument is given, this sets the a
by which nodes will be moved as a percentage of the local edge length. The default valu
percent is 0.40. This smooth scheme is primarily a research scheme to help test other s
schemes.

Smooth Scheme: Winslow
Applies to: Surface meshes

Summary: Elliptic smoothing technique for structured and unstructured surface meshes

Syntax:

{surface_list} Smooth Scheme Winslow [Free]

Discussion:

Winslow elliptic smoothing is based on solving Laplaces equation with the independent
dependent variables interchanged. The method is widely used in conjunction with the ma
and submapping methods to give smooth meshes with positive Jacobians, even on non-
two-dimensional regions. The method has been extended in CUBIT to work on unstruc
meshes.

▼ Mesh Deletion
Meshing a complex model often involves iteration between setting mesh parameters, me
and checking mesh quality. This often requires removing mesh, for only an entity or for an e
and all its lower order geometry, or sometimes for the entire model.

The command to remove all existing mesh entities from the model is:

Delete mesh

The command for deleting mesh on a specific entity is:

Delete mesh {geom_list} [Propagate]
166 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

wning

f that
nd 2)

unding

eting a
yntax

ntrol
ng on
olume

tain
tions
This
ing
cting.
s.

sition.

cified
ecified

ed as

The
atran.
These commands automatically cause deletion of mesh on higher dimensional entities o
the target geometry.

If the Propogate keyword is used, mesh on lower order entities is deleted as well, but only i
mesh is not used by another higher order entity. For example, if two surfaces (surfaces 1 a
sharing a single curve are meshed, and the command“delete mesh surface 1 propagate”
is entered, the mesh on surface 1 is deleted, as well as the mesh on all the curves bo
surface 1 except the curve shared by surface 2.

In some cases, the capability to delete individual mesh faces on a surface is needed. Del
mesh face involves closing a face by merging two mesh nodes indicated in the input. The s
for this command is:

Delete Face <face_id> Node1 <node1_id> Node2 <node2_id>

This command is provided primarily for developers’ use, but also provides the user fine co
over surface meshes. At the present time, this command works only with faces appeari
geometric surfaces and should be used before any hex meshing is performed on any v
containing the face to be deleted.

▼ Node and NodeSet Repositioning
A capability to reposition nodesets and individual nodes is provided. This capability will re
all the current connectivity of the nodes involved, but it cannot guarantee that the new loca
of the moved nodes do not form intersections with previously existing mesh or geometry.
capability is provided to allow the user maximum control over the mesh model be
constructed, and by giving this control the user can possible create mesh that is self-interse
The user should be careful that the nodes being relocated will not form such intersection

The user can reposition nodes appearing in the same nodeset using theNodeSet Move
command. Moves can be specified using either a relative displacement or an absolute po
The command to reposition nodes in a nodeset is:

{nodeset_list} move <delta_x> <deleta_y> <deleta_z>

{nodeset_list} move to <x_position> <y_position> <z_position>

The first form of the command specifies a relative movement of the nodes by the spe
distances and the second form of the command specifies absolute movement to the sp
position.

Individual nodes can be repositioned using the Node Move comand. Moves are specifi
relative displacements. The command syntax is:

Node <range> Move <delta_x> <deleta_y> <deleta_z>

▼ Mesh Importing and Duplicating
Meshes in Exodus II format may be imported from a file and associated with geometry.
mesh file may have been created by CUBIT, or from some other tool such as Grepos or P

Meshes may also be copyied from one geometric entity to another.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual167

CHAPTER 5: Mesh Generation

ching
ed or
mesh,

le than
mbly
rfaces

then

o that
hen
, e.g.,
UBIT
ld

by
tices
xactly

the
iating
n

hese

is
lock
ments
tivity
Importing mesh from an external file
see “Nodeset Associativity Data” on page 182.)

Import Mesh ’<exodusII_filename>’

[Block <block_id> [Volume <volume_id>]] [Preview]

Related Commands:

Delete Mesh Preview

Export [Genesis | Mesh] ’<filename>’

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

set Import Mesh NodeSet Associativity [On|Off]

 set [Export Mesh] NodeSet Associativity [On|Off]

The user can import a mesh from an ExodusII file and associate the mesh with mat
geometry. This mesh may then be manipulated normally; for example it may be smooth
part of it deleted and remeshed. The user can save his work by exporting the geometry and
and the importing the geometry and mesh later. In some cases this is faster or more reliab
replaying journal files. Also, teams working on creating a conforming mesh of a large asse
can pass information to one another: a team member can export the mesh on the su
between two parts, then another team member import that mesh.

If an exported CUBIT mesh is going to be imported back onto the exact same geometry,
before exporting the user shouldset export mesh nodeset associativity on . This causes
extra nodeset data to be written, which associates every node to a geometric entity, s
importing the mesh is more reliable. See “Nodeset Associativity Data” on page 182. W
importing, if the user does not want to use the nodeset associativity data that exists in a file
because the geometry is no longer identical since curves have been composited, or C
names have changed due to an ACIS version change, then before importing the user shouset
import mesh nodeset associativity off .

Care should be taken that the geometry is merged the same way on export and import!

Between exporting and importing a mesh, the geometry may be modified slightly
compositing entities. But if entities are partitioned or a body is webcut, unless the new ver
match up almost exactly with nodes of the mesh, and the new curves match up almost e
with edge chains of the mesh, etc., it will be impossible to associated the mesh with
geometry. If the user has trouble importing a mesh, he may import the mesh without assoc
it with any geometry by specifying thepreview option. This puts the imported mesh entities i
a group called ‘free_elements’. The user may then, e.g,,draw fee_elements add to see if the
mesh indeed matches the geometry. Eventually, the user will want to get rid of t
unassociated mesh elements by thedelete mesh preview command.

If neither ablock nor avolume is specified, then the entire mesh file is read. If a block
specified without specifying a volume, associativiy is used to determine which volume the b
elements should be associated with. If a block and a volume are specified, the block ele
are associated with the specified volume. If a volume is specified without a block, associa
data is used to find a block corresponding to the given volume.
168 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

mand:

ble in
he
Duplicating mesh
If the geometry to be meshed is similar to another meshed body, the user can use the com

Copy Mesh Curve <curve_id_range> Onto Curve <curve_id_range>

 [Source Node <starting node id> <ending node id>]

 [Source Percent [<percentage>|auto]]

 [Source [combine|SEPARATE]] [Target [combine|SEPARATE]]

 [Source Vertex <id_range>] [Target Vertex <id_range>]

Copy Mesh Surface <surface_id> Onto Surface <surface_id>

 [Source Face <id_range>]

 [Source Node <id> Target Node <id>]

 [Source Edge <id> Target Edge <id>]

 [Source Vertex <id> Target Vertex <id>]

 [Source Curve <id> Target Curve <id>] [Nosmoothing]

Copy Mesh Volume <volume_id> Onto Volume <volume_id>

 [Source Vertex <vertex_id> Target Vertex <vertex_id>

 [Source Curve <curve_id> Target Curve <curve_id>] [Nosmoothing]

For a discussion of this command, see theScheme Copydescription. The only difference
between the scheme and this command is that this command takes place immediately.

▼ Mesh Quality Assessment
The ‘quality’ of a mesh can be assessed using several element quality metrics availa
CUBIT. Online information about the CUBIT quality metircs can be obtained from t
command

Quality Describe { hexahedral | tetrahedral | quadrilateral | triangular }

which gives data on the quality metrics for each of the above element types.

Metrics for Triangular Elements
For example,quality describe triangular yields the following information about CUBIT
triangle metrics:

Table 5-4: Description of Triangular Quality Measures

Function
Name

Dimension Full Range
Acceptable

Range
Reference

Aspect
Ratio Gam

L^0 1 to inf 1 to 1.3 1
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual169

CHAPTER 5: Mesh Generation

2000
Triangular Quality Definitions:

Aspect Ratio Gamma: srms**2 / (2.30940108*area)

 where Srms = sqrt(Sum(Si**2)/3), Si = edge length

Element Area: (1/2) * Jacobian at corner node

Maximum Angle: Maximum included angle in triangle

Minimum Angle: Minimum included angle in triangle

 Condition No. Condition number of the Jacobian matrix at any corner

 Scaled Jacobian: Minimum Jacobian divided by the lengths of 2 edge vectors

 References for Triangular Quality Measures:

 1. V. N. Parthasarathy et al, A comparison of tetrahedron quality measures,

 Finite Elem. Anal. Des., Vol 15(1993), 255-261.

 2. Traditional.

 3. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the

 Jacobian Matrix Norm and Associated Quantities, Part I, Int. J. Num. Meth. Engr..

Metrics for Quadrilaterals
Quality describe quadrilateral yields

Element
Area

0 to inf None None 2

Maximum
Angle

degrees 60 to 180 60 to 90 2

Minimum
Angle

degrees 0 to 60 30 to 60 2

Condition
No.

L^0 1 to inf 1 to 1.3 3

Scaled
Jacobian

L^0 -1.155 to
+1.155

0.5 to 1.155 3

Table 5-4: Description of Triangular Quality Measures

Function
Name

Dimension Full Range
Acceptable

Range
Reference
170 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation
Quadrilateral Quality Definitions:

 Aspect Ratio: Maximum edge length ratios at quad center

 Skew: Maximum |cos A| where A is the angle between edges at quad center

 Taper: Maximum ratio of lengths derived from opposite edges

 Warpage: Deviation of element from planarity.

 Element Area: Jacobian at quad center

 Stretch: Sqrt(2) * minimum edge length / maximum diagonal length

Minimum Angle: Smallest included quad angle (degrees).

 Maximum Angle: Largest included quad angle (degrees).

 Oddy: General distortion measure based on left Cauchy-Green Tensor

Condition No. Maximum condition number of the Jacobian matrix at 4 corners

Table 5-5: Description of Quadrilateral Quality Measures

Function
Name

Dimension Full Range
Acceptable

Range
Reference

Aspect
Ratio

L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to inf 0 to 0.7 1

Warpage L^0 0 to inf 0 to 0.1 1

Element
Area

 L^2 -inf to +inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Minimum
Angle

degrees 0 to 90 45 to 90 3

Maximum
Angle

degrees 90 to 360 90 to 135 3

Oddy L^0 0 to inf 0 to 16 4 & 5

Condition
No.

 L^0 1 to inf 1 to 4 5

Jacobian L^2 - inf to inf None 5

Scaled
Jacobian

 L^0 -1 to +1 0.5 to 1 5
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual171

CHAPTER 5: Mesh Generation

, Eng.

2000
 Jacobian: Minimum pointwise volume of local map at 4 corners & center of quad

Scaled Jacobian: Minimum Jacobian divided by the lengths of the 2 edge vectors

 References for Quadrilateral Quality Measures:

1. J. Robinson, CRE Method of element testing and the Jacobian shape parameters
Comput., Vol 4, 1987.

 2. FIMESH code.

 3. Unknown.

 4. A. Oddy, J. Goldak, M. McDill, M. Bibby, A distortion metric for

 isoparametric finite elements, Trans. CSME, No. 38-CSME-32,

 Accession No. 2161, 1988.

 5. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the

 Jacobian Matrix Norm and Associated Quantities, Part I, Int. J. Num. Meth. Engr..

Metrics for Tetrahedral Elements
Quality describe tetrahedral yields

 Tetrahedral Quality Definitions:

 Aspect Ratio Beta: CR / (3.0 * IR) where CR = circumsphere radius,

Table 5-6: Description of Tetrahedral Quality Measures

Function
Name

Dimension Full Range
Acceptable

Range
 Reference

Aspect
Ratio Bet

 L^0 1 to inf 1 to 3 1

Aspect
Ratio Gam

 L^0 1 to inf 1 to 3 1

Element
Volume

 L^3 -inf to +inf None 1

Condition
No.

L^0 1 to inf 1 to 3 2

Jacobian L^3 -inf to +inf None 2

Scaled
Jacobian

L^0 -1.414 to
+1.414

0.5 to
+1.414

2

172 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

000
 IR = inscribed sphere radius

Aspect Ratio Gamma: Srms**3 / (8.479670*V)

 where Srms = sqrt(Sum(Si**2)/6), Si = edge length

 Element Volume: (1/6) * Jacobian at corner node

 Condition No. Condition number of the Jacobian matrix at any corner

 Jacobian: Minimum pointwise volume at any corner

 Scaled Jacobian: Minimum Jacobian divided by the lengths of 3 edge vectors

 References for Tetrahedral Quality Measures:

 1. V. N. Parthasarathy et al, A comparison of tetrahedron quality measures,

 Finite Elem. Anal. Des., Vol 15(1993), 255-261.

 2. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the

Jacobian Matrix Norm and Associated Quantities, Part II, Int. J. Numer. Meth. Engr., 2

Metrics for Hexahedral Elements
Quality describe hexahedral yields

Table 5-7: Description of Hexahedral Quality Measures

Function
Name

 Dimension Full Range
Acceptable

Range
 Reference

Aspect
Ratio

 L^0 1 to inf 1 to 4 1

Skew L^0 0 to 1 0 to 0.5 1

Taper L^0 0 to +inf 0 to 0.4 1

Element
Volume

 L^3 - inf to inf None 1

Stretch L^0 0 to 1 0.25 to 1 2

Diagonal
Ratio

 L^0 0 to 1 0.65 to 1 3

Dimension L^1 0 to inf None 1

Oddy L^0 0 to inf 0 to 20 4,5

Condition
No.

 L^0 1 to inf 1 to 8 5
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual173

CHAPTER 5: Mesh Generation

000

taper,
18]. An
the Z
 Hexahedral Quality Definitions:

 Aspect Ratio: Maximum edge length ratios at hex center.

 Skew: Maximum |cos A| where A is the angle between edges at hex center.

Taper: Maximum ratio of lengths derived from opposite edges.

 Element Volume: Jacobian at hex center.

 Stretch: Sqrt(3) * minimum edge length / maximum diagonal length.

 Diagonal Ratio: Minimum diagonal length / maximum diagonal length.

Dimension: Pronto-specific characteristic length for stable time step

 calculation. Char_length = Volume / 2 grad Volume.

Oddy: General distortion measure based on left Cauchy-Green Tensor.

Condition No. Maximum condition number of the Jacobian matrix at 8 corners.

 Jacobian: Minimum pointwise volume of local map at 8 corners & center of hex.

Scaled Jacobian: Minimum Jacobian divided by the lengths of the 3 edge vectors.

 References for Hexahedral Quality Measures:

 1. L.M. Taylor, and D.P. Flanagan, Pronto3D - A Three Dimensional Transient

 Solid Dynamics Program, SAND87-1912, Sandia National Laboratories, 1989.

 2. FIMESH code

 3. Unknown

 4. A. Oddy, J. Goldak, M. McDill, M. Bibby, A distortion metric for

 isoparametric finite elements, Trans. CSME, No. 38-CSME-32,

 Accession No. 2161, 1988.

 5. P. Knupp, Achieving Finite Element Mesh Quality via Optimization of the

Jacobian Matrix Norm and Associated Quantities, Part II, Int. J. Num. Meth. Engr., 2

Details on Robinson Metrics for Quadrilaterals
The quadrilateral element quality metrics that are calculated are aspect ratio, skew,
warpage, element area, and stretch. The calculations are based on metrics described in [
illustration of the shape parameters is shown in Figure 5-30 The warpage is calculated as

Jacobian L^3 - inf to inf None 5

Scaled
Jacobian

 L^0 -1 to +1 0.5 to 1 5

Table 5-7: Description of Hexahedral Quality Measures

Function
Name

 Dimension Full Range
Acceptable

Range
 Reference
174 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

‘b’
ment

faces,
es of

ed
ality

on
ry

ics

and
argest

s

deviation from the ‘best-fit’ plane containing the element divided by the minimum of ‘a’ or
from Figure 5-30. The stretch metric is calculated by dividing the length of the shortest ele
edge divided by the length of the longest element diagonal.

Command Syntax
The base command to view the quality of a mesh is the following:

Quality {geom_and_mesh_list} [metric name] [quality options]
[filter options]

Where the list contains surfaces and volumes and groups that have been meshed with
triangles, hexes, and tetrahedra; the list can also specify individual mesh entities or rang
mesh entities.

If a specificmetric name is given, only that metric or metrics are computed for the specifi
entities. Note that the metric given must be one which applies to the given entities; qu
metrics and which entities to which they apply are summarized above.

The quality options are:

• [Global | Individual]:

If the user specifiesindividual , one quality summary is generated for each entity specified
the command line. If the user specifiesglobal , or specifies neither, then one quality summa
is generated for each mesh element type.

• [Draw [Histogram] [Mesh] [Monochrome] [Add]]:

If the user specifiesdraw histogram , then histograms are drawn, in a separate graph
window. The window contains one histogram for each quality metric. If the user specifiesdraw
mesh, then the mesh elements are drawn in the default graphics window. The histogram
mesh graphics are color coded by quality: a smallest metric value corresponds to red, a l
metric value to blue, and in-between values according to the rainbow. Ifmonochrome is
specified, then the graphics are not color coded. Ifadd is specified, then the current display i
not cleared before drawing the mesh elements.

Figure 5-30: Illustration of Quadrilateral Shape Parameters (Quality Metrics)

Base line

Aspect Ratio = a/b

a
b

Skew = sin(A)

A

T1

T1 T1

T1

Taper = T1 & T2

T2

T2
T2

T2
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual175

CHAPTER 5: Mesh Generation

f
d out

the

to get

atio

from
• [List [Detail] [Id] [Verbose Errors]]:

If the user specifiesList, then the quality data is summarized in text form.List Detail lists the
mesh elements by ascending quality metric.List Id lists the ids of the mesh elements. I
Verbose Errors is specified, then details about unacceptable quality elements are printe
above the summaries.

There are several options available to filter the output of the quality command, using
following filter options :

• [High <value>] [Low <value>]:

Discards elements with metric values above or below value; either or both can be used
elements above or below a specified value or in a specified range.

• [Top <number>] [Bottom <number>]:

Keeps only number elements with the highest or lowest metric values. For example, “Quality
hex all top 10 ” would request the elements with the 10 highest values of the aspect r
metric.

Example Output
The typical summary output from the commandquality surface 24 is shown in Table 5-8.
Figure 5-31 left shows the corresponding histogram. The colored element display resulting
the commandquality surface 1 draw ‘Skew’ is shown in Figure 5-31 right. A color legend
is also printed to the terminal; see Table 5-9.

Table 5-8: Typical Summary for a Quality Command

Surface 24 Quad quality, 280 elements:

 Function Name Average Std Dev Minimum (id) Maximum (id)

 --------------- --------- --------- -------------- -------------

 Aspect Ratio 1.257e+00 2.574e-01 1.000e+00 (2) 2.504e+00 (346)

 Skew 2.247e-01 1.808e-01 1.612e-03 (190) 8.153e-01 (80)

 Taper 3.076e-02 3.456e-02 3.772e-05 (259) 1.992e-01 (349)

 Warpage 1.199e-03 1.121e-03 2.369e-06 (271) 5.913e-03 (380)

 Element Area 6.335e-04 4.724e-04 3.450e-05 (15) 2.219e-03 (329)

 Stretch 7.406e-01 1.174e-01 3.266e-01 (156) 9.719e-01 (184)

 Maximum Angle 1.137e+02 1.509e+01 9.089e+01 (184) 1.720e+02 (112)

 Minimum Angle 6.835e+01 1.278e+01 3.110e+01 (80) 8.888e+01 (184)

 Oddy 2.025e+00 1.159e+01 3.893e-03 (183) 1.913e+02 (112)

 Folding 2.314e-01 1.447e-01 9.875e-03 (184) 8.703e-01 (112)

 Jacobian 5.195e-04 4.107e-04 2.240e-05 (14) 1.889e-03 (212)

 Scaled Jacobian 8.731e-01 1.353e-01 1.385e-01 (112) 9.998e-01 (184)
176 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 5: Mesh Generation

tions
h and
h can

ere.

cky,
tine is
these

be
could

iately
ulting
Controlling Mesh Quality
After a model is meshed, if the quality of mesh isn’t acceptable, then there are two op
available to improve that quality. The user can ask for more smoothing, or delete the mes
start over. There are some tools that the user can invoke before meshing the model whic
help to improve mesh quality. Skew control is one of these tools, and will be discussed h

The philosophy behind the skew control algorithm is one of subdividing surfaces into blo
four-sided areas which can be easily mapped. The goal of this subdivide-and-conquer rou
to lessen the skew that a mesh exhibits on submapped regions. By controlling the skew on
surfaces, the mesh of the underlying volume will also demonstrate less skew.

The commands for skew control are:

Control Skew Surface {surface_list} [Individual]

Delete Skew Control {surface_list} [Propagate]

The keywordIndividual is deprecated. It’s purpose is to specify that surfaces should
processed without regards to the other surfaces in the given list. This is not necessary, and
lead to problems with the final mesh. When the command is entered, the algorithm immed
processes the surfaces, inserting vertices and setting interval constraints on the res

Table 5-9: Legend for Quality Surface 1 Skew Draw Mesh

Surface 24 Quad quality, 280 elements:
 Skew ranges from 1.612e-03 to 8.153e-01 (280 entities)
 Blue ranges from 1.612e-03 to 1.178e-01 (102 entities)
 Cyan ranges from 1.178e-01 to 2.341e-01 (60 entities)
 Green ranges from 2.341e-01 to 3.503e-01 (58 entities)
 Yellow ranges from 3.503e-01 to 4.666e-01 (29 entities)
 DkYellow ranges from 4.666e-01 to 5.828e-01 (15 entities)
 Pink ranges from 5.828e-01 to 6.990e-01 (12 entities)
 Red ranges from 6.990e-01 to 8.153e-01 (4 entities)

Quality Surface 24 Draw Histogram Quality Surface 24 Skew Draw Mesh

Figure 5-31: Illustration of Quality Metric Graphical Output
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual177

CHAPTER 5: Mesh Generation

ulting
those
lessen

e. This
the
ontrol
ol was
h are

If an
be

sh is
subdivided curves. In this way the mesh is more constrained in its generation, and the res
skew on the model can be lessened. The only surfaces which can utilize this algorithm are
which lend themselves to a structured meshing scheme, although future releases might
this restriction.

The user also has the ability to delete the changes that the skew control algorithm has mad
is done by using thedelete skew controlcommand. When the user requests the deletion of
skew control changes on a given surface, every curve on that surface will have the skew c
changes deleted, even if a given curve is shared with another surface on which skew contr
performed. If the user wishes to propagate the deletion of skew control to all surfaces whic
affected by one (or more) particular surfaces, the keywordpropagate should be used.

▼ Mesh Validity
After a mesh is generated, it is checked to ensure that the mesh has valid connectivity.
invalid mesh is formed, then CUBIT automatically deletes it. This default behavior can
changed with the following command:

Set Keep Invalid Mesh [on|off]

The current behavior can be viewed with the following command:

List Keep Invalid Mesh

The Jacobian quality metric is also computed automatically to check quality after a me
generated. If the quality is poor, a warning is printed to the terminal.
178 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

model
nitions
of the
blem

in the
imes
us file
se.

which
ps of
efining

s the
oring
s for

k are
ugh a
Chapter 6: Finite Element Model
Definition and Output

▼ Introduction…179

▼ Finite Element Model Definition…179

▼ Element Block Specification…181

▼ Nodesets and Sidesets…181

▼ ExodusII Model Title…183

▼ Exporting the Finite Element Model…184

▼ Introduction
This chapter describes the techniques used to complete the definition of the finite element
and the commands to export the finite element mesh to an Exodus database file. The defi
of the basic items in an Exodus database are briefly presented, followed by a description
commands a user would typically enter to produce a customized finite element pro
description.

▼ Finite Element Model Definition
Sandia’s finite element analysis codes have been written to transfer mesh definition data
ExodusII file format [6]. The ExodusII database exported during a CUBIT session is somet
referred to as a Genesis database file; this term is used to refer to a subset of an Exod
containing the problem definition only, i.e., no analysis results are included in the databa

The ExodusII database contains mechanisms for grouping elements into Element Blocks,
are used to define material types of elements. ExodusII also allows the definition of grou
nodes and element sides in Nodesets and Sidesets, respectively; these are useful for d
boundary and initial conditions. Using Element Blocks, Nodesets and Sidesets allow
grouping of elements, nodes and sides for use in defining boundary conditions, without st
analysis code-specific boundary condition types. This allows CUBIT to generate meshe
many different types of finite element codes.

Element Blocks
Element Blocks (also referred to as simply,Blocks) are a logical grouping ofelementsall having
the same basic geometry and number of nodes. All elements within an Element Bloc
required to have the same element type. Access to an Element Block is accomplished thro
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual179

CHAPTER 6: Finite Element Model Definition and Output

s to

ID.
ically
fy a

desets
ey
es to

r (see
types

ne the
ilable
ption
ix D.

been
o the

,

user-specified integer Block ID. Typically, Element Blocks are used by analysis code
associate material properties and/or body forces with a group of elements.

Nodesets
Nodesets are a logical grouping ofnodesaccessed through a user-specified Nodeset
Nodesets provide a means to reference a group of nodes with a single ID. They are typ
used to specify load or boundary conditions on portions of the CUBIT model or to identi
group of nodes for a special output request in the finite element analysis code.

Sidesets
Sidesets are another mechanism by which constraints may be applied to the model. Si
represent a grouping ofelement sidesand are also referenced using an integer Sideset ID. Th
are typically used in situations where a constraint must be associated with element sid
satisfactorily represent the physics (for example, a contact surface or a pressure.

Element Types
The basic elements used to discretize geometry were described in a previous chapte
“Element Types” on page 180). Within each basic element type, several specific element
are available; these specific element types vary by the number of nodes used to defi
element, and result in different orders of accuracy of the element. The element types ava
for each basic element type defined in CUBIT are summarized in Table 6-1. For a descri
of the node and side numbering conventions for each specific element type, see Append

Element types can be set for individual Element Blocks, either before or after meshing has
performed. Higher-order nodes are created only when the mesh is being exported t
ExodusII file, and persist in the CUBIT database after file export.

Table 6-1: Element types defined in CUBIT.

Basic Element Type Specific Element Types Notes

Edge BAR, BEAM Bars have 2 DOF’s per node, Beams 3

Triangle TRI, TRI3, TRI6, TRI7 Tri element nodal coordinates are
always 3D.

Quadrilateral QUAD, QUAD4, QUAD8,
QUAD9; SHELL,
SHELL4, SHELL8,
SHELL9

Quad element nodal coordinates are 2D
that is their nodes contain only x and y
coordinates. Shell element nodal coor-
dinates are 3D.

Tetrahedron TETRA, TETRA4,
TETRA8, TETRA10

TETRA8 contains vertex nodes and
mid-face nodes, experimental element
used in Sandia FEA research

Hexahedron HEX, HEX8, HEX20,
HEX27
180 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 6: Finite Element Model Definition and Output

entity.
lement
th the

us

nts,

fault
ged,
and

type
id’s

ement

nts

:.

l using
by their
ets can
urves.
can be
▼ Element Block Specification
Element blocks are the method CUBIT uses to group related sets of elements into a single
Each element in an element block must have the same basic and specific element type. E
Blocks may be defined for volumes, surfaces, and curves. Element blocks are defined wi
following Block commands.

Block <block_id> {Curve | Surface | Volume} <range>

Block <block_id_range> Element Type <type>

Block <block_id_range> Attribute <value>

Some important notes regarding Element Blocks are as follows:

• Multiple volumes, surfaces, and curves can be contained in a single element block

• A volume, surface, or curve can only be in one element block

• Element Block id’s are arbitrary and user-defined. They do not need to be in any contiguo
sequence of integers.

• Element Blocks can be assigned a single floating point number, referred to as the block
Attribute; this number is used to represent the length or thickness of Bar and Shell eleme
respectively. The attribute defaults to 1.0 if not specified.

When exporting an ExodusII file, if the user has not specified any Element Blocks, by de
element blocks will be written for any meshed volumes. This default behavior can be chan
to write surface, volume, or no meshes by default. This option can be set using the comm

Set Default Blocks [on|off|Volume|Surface]

If the element type is not assigned for an element block, it will be assigned a default
depending on which type of geometry entity is contained in the block; default element block
are also determined by the geometry entity being meshed. The default values used for el
type and id are:

Volume: The default block ID will be set to the Volume ID and 8-node hexahedral eleme
will be generated.

Surface: The block ID will be set to 0 and 4-node shell elements will be generated.

Curve: The block ID will be set to 0 and 2-node bar elements will be generated.

Several examples of specifying various types of element blocks are given in Appendix A

▼ Nodesets and Sidesets
Boundary conditions such as constraints and loads are applied to the finite element mode
nodesets and sidesets. Nodesets can be created from groups of nodes categorized
owning volumes, surfaces, or curves. Nodes can belong to more than one nodeset. Sides
be created from groups of element sides or faces categorized by their owning surfaces or c
Element sides and faces can belong to more than one sideset. Nodesets and Sidesets
viewed individually through CUBIT by employing theDraw Nodeset andDraw Sideset
commands.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual181

CHAPTER 6: Finite Element Model Definition and Output

l using

ers. If

using

way
e,

ult is
ken

can be
UBIT
with a

with

dusII
r

for
metry.
riting

odeset
umber
base
Nodesets and Sidesets may be assigned to the appropriate geometric entities in the mode
the following commands:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex} <range>

Sideset <sideset_id> Surface <range>

 [Remove|Forward|Reverse|Both|wrt Volume <id>]

Sideset <sideset_id> Curve <range> [Remove|wrt {Surface <id>|All}]

Like element blocks, Nodesets and Sidesets are given arbitrary, user-defined ID numb
there are no user-defined Nodesets or Sidesets, none are written to the ExodusII file.

With Sidesets, direction is often important. For surfaces, the direction may be specified
theForward , Reverse, or Both options. TheForward option will write a sideset for the hexes
in the surface’s forward volume, which is the volume that the surface’s normal points a
from. TheReverseoption will write a sideset for the hexes in the surface’s reverse volum
which is the volume that the surface’s normal points into. TheBoth option will allow sidesets
to be written for the hexes that lie in volumes on both sides of the surface. The defa
Forward . The user can additionally specifiy the volume from which the hexes should be ta
by the wrt Volume option.

Direction is equally important for curves in Sidesets. Thewrt Surface option allows the user
to indicate which surface’s faces will be included in the Sideset. Thewrt All option will include
all faces attached to the curve. The default iswrt All .

Nodeset Associativity Data
Nodesets can be used to store geometry associativity data in the ExodusII file. This data
used to associate the corresponding mesh to an existing geometry in a subsequent C
session. This functionality can be used either to associate a previously-generated mesh
geometry (“Mesh Importing and Duplicating” on page 167), or to associate a field function
a geometry for adaptive surface meshing (see “Adaptive Meshing” on page 215).

The commands to control and list whether associativity data is written or read from an Exo
files are the following. Note thatComplete is only used for Adaptive Meshing, while the othe
options are useful for re-importing meshes into CUBIT.

List Import Mesh NodeSet Associativity

List [Export Mesh] NodeSet Associativity

List [Export Mesh] NodeSet Associativity Complete

 set Import Mesh NodeSet Associativity [On|Off]

 set [Export Mesh] NodeSet Associativity [On|Off]

 set [Export Mesh] NodeSet Associativity Complete [On|Off]

Associativity data is stored in the ExodusII file in two locations. First, a nodeset is written
each piece of geometry (vertices, curves, etc) containing the nodes owned for that geo
Then, the name of each geometry entity is associated with the corresponding nodeset by w
a property name and designating the corresponding nodeset as having that property. N
numbers used for associativity nodesets are determined by adding a fixed base n
(depending on the order of the geometric entity) to the geometric entity id number. The
182 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER 6: Finite Element Model Definition and Output

odes

s are
wned

has

rm a

sform

from

T. It
numbers for various orders of geometric entities are shown in Table 6-2. For example, n
owned by curve number 26 would be stored in associativity nodeset 40026.

Instead of storing just the nodes owned by a particular entity, nodes for lower order entitie
also stored. For example, the associativity nodeset for a surface would contain all nodes o
by that surface as well as the nodes on the bounding curves and vertices.

▼ ExodusII Model Title
CUBIT will automatically generate a default title for the Genesis database. The default title
the form:

cubit(genesis_filename): date: time

The title can be changed using the command:

Title ’<title_string>’

▼ Transforming Mesh Coordinates
A mesh can be transformed to a new location as it is written to an Exodus file. To transfo
mesh during export use the following command:

Transform Mesh Output
[Scale <factor> [<factor> <factor>]]
[Scale {X|Y|Z} <factor>]
[Translate <dx> [<dy> [<dz>]]]
[Translate {X|Y|Z} <distance>]
[Rotate <degrees> about {X|Y|Z}]
[Reset]

This command may be repeated any number of times using any number of options. Tran
commands are cumulative, added to the effect of previous transforms. Use theReset option to
clear the transformation matrix and to prevent previous transformation commands
affecting node positions in the output file.

Transforming a mesh during output does not change the position of the mesh within CUBI
only changes the nodal positions written to the Exodus file.

Table 6-2: Nodeset id base numbers for geometric entities

Geometric Entity Base Nodeset Id

Vertex 50000

Curve 40000

Surface 30000

Volume 20000
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual183

CHAPTER 6: Finite Element Model Definition and Output

ritten
▼ Exporting the Finite Element Model
After defining the element blocks, nodesests and sidesets for a model, the model can be w
to the ExodusII file using the command:

Export Genesis ’<filename>’
184 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

0-0249,

genera-

,

.

tory,

,

,

, San-

the

l. Des.,
▼ References
1 T. D. Blacker and M. B. Stephenson, ‘Paving: a new approach to automated quadrilateral mesh generation’, SAND9

Sandia National Laboratories, (1990).

2 M. B. Stephenson, S. A. Canann, and T. D. Blacker, ‘Plastering: a new approach to automated, 3D hexahedral mesh
tion’, SAND89-2192, Sandia National Laboratories, (1992).

3 G. D. Sjaardema, et. al.,CUBIT Mesh Generation Environment, Volume 2: Developers Manual, SAND94-1101, Sandia Na-
tional Laboratories, (1994).

4 Spatial Technology, Inc.,ACIS Test Harness Application Guide Version 1.4, Spatial Technology, Inc., Applied Geometry, Inc.
and Three-Space, Ltd., (1992).

5 T. D. Blacker,FASTQ Users Manual Version 1.2, SAND88-1326, Sandia National Laboratories, (1988).

6 L. A. Schoof,EXODUS II Application Programming Interface, internal memo, Sandia National Laboratories, (1992).

7 W. A. Cook and W. R. Oakes, ‘Mapping methods for generating three-dimensional meshes’,Comp. mech. eng., Volume 1,
67-72 (1982).

8 R. E. Jones,QMESH: A Self-Organizing Mesh Generation Program, SLA - 73 - 1088, Sandia National Laboratories, (1974)

9 R. E. Tipton, ‘Grid Optimization by Equipotential Relaxation’, unpublished, Lawrence Livermore National Labora
(1990).

10 A. P. Gilkey and G. D. Sjaardema,GEN3D: A GENESIS Database 2D to 3D Transformation Program, SAND89-0485, San-
dia National Laboratories, (1989).

11 G. D. Sjaardema,GREPOS: A GENESIS Database Repositioning Program, SAND90-0566, Sandia National Laboratories
(1990).

12 G. D. Sjaardema,GJOIN: A Program for Merging Two or More GENESIS Databases, SAND92-2290, Sandia National Lab-
oratories, (1992).

13 G. D. Sjaardema,APREPRO: An Algebraic Preprocessor for Parameterizing Finite Element Analyses, SAND92-2291, San-
dia National Laboratories, (1992).

14 G. D. Sjaardema,Overview of the Sandia National Laboratories Engineering Analysis Code Access System, SAND92-2292,
Sandia National Laboratories, (1993).

15 S. C. Lovejoy and R. G. Whirley,DYNA3D Example Problem Manual, UCRL-MA--105259, University Of California and
Lawrence Livermore National Laboratory, (1990).

16 Open Software Foundation, Inc.,OSF/MotifTM User’s Guide Revision 1.2, PTR Prentice Hall, Englewood Cliffs, New Jersey
(1993).

17 J. M. Osier,Keeping Track, Managing Messages with GNATS, The GNU Problem Report Management System, Users manual
for GNATS Version 3.2, Cygnus Support, October 1993.

18 J. Robinson, “CRE method of element testing and Jacobian shape parameters,Eng. Comput., Vol. 4 (1987).

19 L. M. Taylor and D. P. Flanagan, Pronto 3D—A Three-Dimensional Transient Solid Dynamics Program, SAND87-1912
dia National Laboratories, (1989).

20 S. W. Attaway, unpublished, (1993).

21 A.Oddy, J. Goldak, M. McDill, and M. Bibby “A Distortion Metric for Isoparametric Finite Elements” Transactions of
Canadian Soc. Mech. Engr., pp213-217, Vol 12, No 4, 1988.

22 V. N. Parthasarathy, C.M. Graichen, A.F. Hathaway, "A comparison of tetrahedron quality measures", Finite Elem. Ana
Vol 15(1993), 255-261.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual185

CHAPTER
186 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

ent
s also
pendix

duce
ands
urnal
site.
r that
Appendix A: Examples
▼ Introduction…187

▼ General Comments…187

▼ Simple Internal Geometry Generation…188

▼ Octant of Sphere…190

▼ Box Beam…190

▼ Thunderbird 3D Shell…193

▼ Advanced Tutorial…196

▼ ExodusII File Specification…200

▼ Introduction
The purpose of this Appendix is to demonstrate the capabilities of CUBIT for finite elem
mesh generation as well as provide a few examples on the use of CUBIT. Some example
demonstrate the use of the ACIS test harness as well as other related programs. This Ap
is not intended to be a step-by-step tutorial.

▼ General Comments
The examples in this appendix show the use of CUBIT under various scenarios. To repro
these examples, the user would need the journal files containing the CUBIT comm
described below, and in some cases an ACIS SAT file containing model geometry. The jo
files and SAT files necessary for running these examples are available from the CUBIT web
For examples not requiring SAT files, the user can also type in the commands described fo
example.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual187

APPENDIX A: Examples

. The

within
ith a

. This
final
The examples in this appendix each cover several of CUBIT’s mesh generation capabilities
CUBIT features exercised by each example are shown in Table A-1.

▼ Simple Internal Geometry Generation
This simple example demonstrates the use of the internal geometry generation capability
CUBIT to generate a mesh on a perforated block. The geometry for this case is a block w
cylindrical hole in the center. It illustrates thebrick , cylinder , subtract , pave , andtranslate
commands and boolean operations. The geometry to be generated is shown in Figure A-1
figure also shows the curve and surface labels specified in the CUBIT journal file. The
meshed body is shown in Figure A-2. The CUBIT journal file is:

Internal Geometry Generation Example
Brick Width 10. Depth 10. Height 10. # Create Cube
Cylinder Height 12. Radius 3. # Create cylinder through Cube
View From 15 20 25 # Move to new Viewpoint
Display #You may want to move to graphics window to mouse

#around to get the feel for it
Subtract 2 From 1 # Remove cylinder from cube—create hole
Body 3 Size 1.0 # Default element size for model
Label Curve On
Label Surface On #Turn on curve and surface labels for scheme

#and size specification
Display
Surface 10 Interval 10 # Change intervals on cylinder surface
Curve 15 to 16 Interval 20 # Change intervals around cyl. circ.
Surface 11 Scheme Pave # Front surface paved
Volume 3 Scheme Sweep Source 11 Target 12 #Remainder

of block will be meshed by
sweeping front surface to back surface

Mesh Volume 3 # Create the mesh
Graphics Mode Hiddenline # Hiddenline view of cube (Figure B-2)

Examples
Geometry
Features

Surface Meshing
Features

Volume
Meshing
Features

P
rim

iti
ve

s

B
oo

le
an

s

D
ec

om
po

si
tio

n

M
er

gi
ng

In
te

rv
al

 A
ss

ig
nm

en
t

S
ub

m
ap

pi
ng

M
ap

pi
ng

P
av

in
g

T
ria

ng
le

 T
oo

l

S
m

oo
th

in
g

S
w

ee
pi

ng

S
ub

m
ap

pi
ng

M
ap

pi
ng

T
et

ra
he

dr
on

Internal Geometry x x x x x x

Sphere Octant x x x x x x x x x x x

Box Beam x x x x

Thunderbird x x x x

Advanced Tutorial x x x x x x x x x x

Table A-1: CUBIT Features Exercised by Examples.
188 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX A: Examples

units
s it is
y
y 3).
then

edges
rface
The first two lines create a 10 unit cube centered at the origin and a cylinder with radius 3
and height of 12 units also centered at the origin. The cylinder height is arbitrary as long a
greater than the height of the brick. Thesubtract command then performs the boolean b
subtracting the cylinder (body 2) from the block (body 1) to create the final geometry (bod
The remainder of the commands simply assign the desired number of intervals and
generate the mesh. Note that since the cylindrical hole is a “periodic surface,” there are no
joining the two curves so the number of intervals along its axis must be set by the su
interval command.

Figure A-1: Geometry for Cube with Cylindrical Hole

Figure A-2: Generated Mesh for Cube with Cylindrical Hole

15
17

18

19

28

20

27

16
21

22

26

23

24

25

Curve Labels

10

11

12

13

14

15

16

Surface Labels
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual189

APPENDIX A: Examples

erate
only on
in this
peel”
ith the

.

. A
s the
The
metry
▼ Octant of Sphere
This example also illustrates the internal geometry generation capabilities of CUBIT to gen
an octant of a sphere. The procedure used is to generate the octant by creating a sphere
the positive quadrant of the reference frame. Two methods of meshing are demonstrated
example: one is to decompose the octant into to volumes - a central “core” and an outer “
which are both meshable using the sweep schemes. The second is to mesh the octant w
triangle and tetrahedron meshing scheme. This example uses thesphere, webcut, merge, auto,
triangle, tetrahedron and smooth commands.

The following annotated CUBIT journal file will generate the meshes shown in Figure A-3

create an octant of a sphere on the positive quadrant
Sphere Radius 10.0 xpos ypos zpos #create the octant
Webcut Body 3 Cylinder Radius 4 Axis z Noimprint Nomerge

coalesce redundant surfaces
Merge All

Volume 5 Size 0.4999
Volume 4 Size 0.6

Volume all Scheme Auto #Use auto to set meshing schemes
List Volume 4 #List the volume to see the schemes
List Volume 5 #List the volume to see the schemes
Mesh Volume all

#now try it with the tetrahedron this way
Reset
Sphere Radius 10. xpos ypos zpos #Create an octant
the tetrahedron scheme will mesh a tetrahedron with hexes
Volume 3 scheme tetrahedron #mesh the volume with the primitive
Surface All Scheme Triangle #Surfaces must be scheme triangle
Volume 3 size 0.7 #Set an interval size
Mesh Surface all #First mesh the surfaces
Smooth Surface all #Scheme Triangle often requires smoothing
Mesh Volume 3 #Mesh the volume
Export Genesis’Octant.gen’ # Write out the mesh

▼ Box Beam
A simple example using CUBIT is the box beam buckling problem shown in Figure A-4
description of an analysis which uses this type of mesh is found in [15]. This example use
merge , nodeset and block commands and the mapping mesh generation scheme.
geometry is generated inside of CUBIT using Aprepro commands and variables. The geo
file is as follows:

File: boxBeamGeom.jou
Side = {Side = 1.75}
Height = {Height = 12.0}
Upper = {Upper = 2.0}
Brick Width {Side/2.0} depth {Side/2.0} height {Height-Upper}
Body 1 name “lowerSection”
Brick Width {Side/2.0} depth {Side/2.0} height {Upper}
Body 2 name “upperSection”
Move lowerSection xyz {Side/4.0} {Side/4.0} {(Height-Upper)/
2.0}
Move upperSection xyz {Side/4.0} {Side/4.0} {Upper/2.0 + Height
190 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX A: Examples

oblem
that
- Upper}
Export acis “boxBeam.sat” #Save the file to SAT

In this example, it is assumed that subsequent analyses will take advantage of the pr
symmetry and therefore only one-quarter of the box beam will be meshed. It is worth noting

Figure A-3: Mesh for Octant of Sphere via Coring/Sweeping (left) and the Tetrahedron
Primitive (Right)

Figure A-4: Box Beam example
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual191

APPENDIX A: Examples

thus
CIS

f the
box
there are a variety of ways to construct a solid model for this problem; however, experience
far with ACIS and CUBIT indicates that the easiest way to model the box beam is to use A
block primitives1. Even though subsequent meshing will only be performed on the faces o
solid model, the entire 3D body is saved as an ACIS.sat file. The CUBIT journal file for the
beam example is:

File: boxBeam.jou

Thickness = {Thickness = 0.06}
Crease = {Crease = 0.01}
XYInts = {XYInts = 10}
ZInts = {ZInts = 90}
UpperInts = {UpperInts = 15}

Import Acis ’boxBeam.sat’

Merge All
Label Surface on
Label Curve on
Display

Curve 1 To 8 Interval {XYInts}
Curve 13 To 16 Interval {XYInts}

Curve 9 To 12 Interval {ZInts-UpperInts}
Curve 21 To 24 Interval {UpperInts}

Mesh Surface 3
Mesh Surface 6
Mesh Surface 9
Mesh Surface 12

NodeSet 1 Curve 1
NodeSet 2 Curve 4

NodeSet 1 Move {-Crease} 0 0
NodeSet 2 Move 0 {Crease} 0

Block 2 Surface 3
Block 2 Surface 6

Block 1 Surface 9
Block 1 Surface 12

Block 1 To 2 Attribute {Thickness}

Export Genesis ’boxBeam.exoII’
Quit

Commands worth noting in the CUBIT journal file include:

• Block, Block Attribute Allows the user to specify that shell elements for the
surfaces of the solid model are to be written to the output (EXODUSII) database,
and that shell elements be given a thickness attribute. This is necessary since
CUBIT defaults to three-dimensional hexahedral meshing of solid model vol-
umes.

• NodeSet Move Allows the user to actually move the specified nodes by a vec-
tor (∆x, ∆y, ∆z). This is advantageous for the buckling problem, since the numer-
ical simulation requires a small “crease” in the beam in order to perform well.

1. This geometry can also be generated using the internal CUBIT Brick primitive.
192 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX A: Examples

ntly
e” is

a few

ame
• Merge Allows the user to combine geometric features (e.g. edges and surfaces).

Other commands in the journal file should be straightforward. Since the problem is sufficie
simple to mesh using a mapping transformation, specification of a meshing “schem
unnecessary (mapping is the default in CUBIT).

Finally, note that both the CUBIT journal files (boxBeamGeom.jou and boxBeam.jou)
contain macros that are evaluated using Aprepro. Themakefileis used to semi-automatically
generate the mesh is given below:

File: Makefile

boxBeam.g:boxBeam.exoII
ex2exlv2 boxBeam.exoII boxBeam.g

boxBeam.exoII:boxBeam.sat boxBeam.jou
cubit -batch -nographics boxBeam.jou

boxBeam.sat: boxBeamGeom.jou
cubit -batch -nographics boxBeamGeom.jou

boxBeam.jou: boxBeam.jou

clean:
@-rm *.sat *.exoII *.g

While this particular example is a trivial use of the software, it does serve to demonstrate
of the capabilities offered by CUBIT.

▼ Thunderbird 3D Shell
This example is the three-dimensional paving of a shell shown in Figure A-5. The 2D wirefr
geometry of the thunderbird is given by the following FASTQ file:

#File: tbird.fsq
TITLE
MESH OF SANDIA THUNDERBIRD

$ block {e = .2} int= {isq = 20}
$ number of elements in block thick {iblk t = 5 } block thickness
{blkt=.2 }
$ block angle {angle=15}
$ magnification factor = {magnificationFactor=1.0}
$ bird {bthick = .018} {ithick = 3} {idepth = 20}
$ {pi = 3.14159265359} {rad=magnificationFactor/pi} {bdepth=1.}
$ preferred normalized element size = {elementSize=0.06}
$ number of intervals along outside edges =
$ {border_int=5} {corner_int=10} {side_int=20}
$ {outsideIntervals= 2*corner_int+side_int}
$ {boxTop=.2} {topIntervals = 8}

$ {insideCurveInt=8}

$ {MAG=magnificationFactor/3.0}

$ {middleInside=MAG*0.97}
$ {xCurveStartInside=MAG*0.60}
$ {yCurveStartInside=MAG*0.93}
$ {curveMiddleInside=MAG*0.81}

$ {xCurveStartOutside=MAG*0.75}
$ {yCurveStartOutside=MAG*1.17}
$ {middleOutside=MAG*1.20}
$ {curveMiddleOutside=MAG*1.01}
$ {boundingBox = MAG*1.5}
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual193

APPENDIX A: Examples
$ Thunderbird Coordinates

POINT 1 {MAG*-.40} {MAG*.78}
POINT 2 {MAG*-.40} {MAG*.59}
POINT 3 {MAG*-.22} {MAG*.59}
POINT 4 {MAG*-.22} {MAG*.40}
POINT 5 {MAG*-.75} {MAG*.40}
POINT 6 {MAG*-.78} {MAG*-.09}
POINT 7 {MAG*-.75} {MAG*-.58}
POINT 8 {MAG*-.53} {MAG*-.60}
POINT 9 {MAG*-.54} {MAG*-.23}
POINT 10 {MAG*-.42} {MAG*-.23}
POINT 11 {MAG*-.42} {MAG*.07}
POINT 12 {MAG*-.24} {MAG*.07}
POINT 13 {MAG*-.27} {MAG*-.80}
POINT 14 {MAG*.27} {MAG*-.80}
POINT 15 {MAG*.24} {MAG*.07}
POINT 16 {MAG*.42} {MAG*.07}
POINT 17 {MAG*.42} {MAG*-.23}
POINT 18 {MAG*.54} {MAG*-.23}
POINT 19 {MAG*.53} {MAG*-.60}
POINT 20 {MAG*.75} {MAG*-.58}
POINT 21 {MAG*.78} {MAG*-.09}
POINT 22 {MAG*.75} {MAG*.40}
POINT 23 {MAG*.22} {MAG*.40}
POINT 24 {MAG*.21} {MAG*.78}
POINT 25 {MAG*0.0} {MAG*.80}

$ lines for Tbird

LINE 1 STR 1 2

Figure A-5: Sandia Thunderbird 3D shell
194 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX A: Examples

into
the

the

ough
into

, and
eated.
LINE 2 STR 2 3
LINE 3 STR 3 4
LINE 4 STR 4 5
LINE 5 CIRM 5 7 6
LINE 6 STR 7 8
LINE 7 STR 8 9
LINE 8 STR 9 10
LINE 9 STR 10 11
LINE 10 STR 11 12
LINE 11 STR 12 13
LINE 12 STR 13 14
LINE 13 STR 14 15
LINE 14 STR 15 16
LINE 15 STR 16 17
LINE 16 STR 17 18
LINE 17 STR 18 19
LINE 18 STR 19 20
LINE 19 CIRM 20 22 21
LINE 20 STR 22 23
LINE 21 STR 23 24
LINE 22 STR 24 1 0 7 1.0

$ REGIONS

SIZE {elementSize*MAG}

REGION 1 1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 *
 -16 -17 -18 -19 -20 -21 -22

SCHEME 0 X
BODY 1
EXIT

A command interpreter has been developed inside CUBIT to convert FASTQ geometry
CUBIT’s modeling system (ACIS). The previous file, tbird.fsq, can be read into CUBIT by
command:

Import Fastq “<file_name>”

The file can be read into CUBIT and converted from a 2D “sheet” body to a 3D solid, by
following commands:

#File: tbird3dGeom.jou
import fastq “tbird.fsq”
cylinder radius.5 height 1.25
rotate body 2 about x angle 90
sweep surface 1 vector 0 0 1 distance 1
intersect body 3 with body 2
export acis “tbird3d.sat”

This example shows a powerful technique of generating two dimensional surfaces thr
FASTQ or through CUBIT’s own bottom up geometry creation, and then sweeping them
three dimensional shapes.

In this example, only the 3D shell of the thunderbird is desired for the finite element model
thus, the block command is used to specify that only elements on the surface are to be cr
The following CUBIT journal file demonstrates current 3D paving capability:

#File: tbird3d.jou

Import Acis ’tbird3d.sat’
#You may want to move the view around by mousing in the Graphics
#window to get a better idea of the 3D shaped surface.
Label Surface on
Display
Draw Surface 23
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual195

APPENDIX A: Examples

ns to
e first
art for

be
model.

orrect
rge the
watch

e and
during

mes are
sions.
each

se is
Draw Surface 24

Surface 24 Size 0.03
Surface 24 Scheme Pave
Mesh Surface 24
#Show the quality of mesh measured by skew (note the scale)
Quality surface 24 draw mesh skew

Block 1 Surface 24
Block 1 Attribute 0.03
Export Genesis “tbird.g2”

▼ Advanced Tutorial
The objective of this example is to illustrate the use of some advanced meshing operatio
mesh a more complex geometry. The example purposely does not do everything right th
time to demonstrate the thought process a user would go through when meshing a real p
the first time. This example demonstrates the use ofwebcut to decompose the model into
sweepable volumes, manually settingmeshing schemeswhenscheme autofails for certain
volumes andmatching intervals to ensure meshing scheme constraints are meet. It should
noted that the sequence of commands is important to successfully generate the meshed
It is recommended that the user first perform all the decomposition on the model, thenimprint
the entire model. Imprinting ensures that the topology of adjacent bodies match so that c
merging of adjacent surfaces can be performed. Next, use the merge all command to me
common surfaces and ensure a contiguous mesh throughout the model. It is important to
the merge all command output, since during typicalmerge alloperations, all of the curves and
vertices will be merged during the surface merging. Thus unless specifically desired, curv
vertex merging messages should not be seen from this command. If these are reported
the execution of the command, it may indicate invalid topology (remedied by animprint all) or
some other invalidity in the model. Performing animprint all after themerge all may corrupt
the data base; the user should not perform geometry operations after themergecommand. Next,
set the element size (e.g.volume all size 15) then the meshing schema (e.g.volume all scheme
auto). The regime is finished when the mesh command is issued. Setting up BC’s andElement
Blocks are not covered in this tutorial.

The command set default names on assigns names to the geometric entities. These na
saved with the geometry when the file is saved and also remain constant within code revi
Throughout the session, each entity will acquire multiple names and any name given for
entity is valid for identification.

The ACIS SAT file for this tutorial can be obtained via the Cubit website at:

http://endo.sandia.gov/cubit/turorial_files.html

The geometry used in this example is shown in Figure A-6. The journal file for this exerci
given below as follows. The resulting mesh is shown in Figure A-7.

Turn on the default names so when the file is read in,
the entities will be named.
Assign names to geometric entities such as cur01, surf10,
etc.
read in the file
Some default names have already been set in the sat file.
Turn on default names after the original has been read in
so only entities created after the import can be read.
import acis “advanced_demo.sat”
196 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX A: Examples
Set a better graphics mode for viewing.
graphics mode smoothshade
Look at each body to get a feel for what needs to occur.
draw body 1
draw body 2
draw body 3
Make sure we do fast imprinting.
set group imprint on
set body 1 as the only visible entity for better
visualization of subsequent decomposition
body all visibility off
body 1 visibility on
display
the geometry must be decomposed into sweepable volumes
webcut body all plane sur10
webcut bod1@A with sheet extended from sur14
turn the visibility back on
body all vis on
center of cylinder is at origin.
Core out the center of the half sphere,
and include the block imprint inside the core.
rad 60 was a guess but the user can also use existing curves
to estimate the radius required to core the center.
NOTE: “WARNING: entity ignored ... cutting tool does not”
will appear. This is just information to the user that not
all the bodies were intersected with the cylinder
webcut body all cylinder radius 60 axis y
now cut in half to rotate the sphere portion. the mesh can
only be rotated 180 degrees so it has to be cut in half.
webcut body all plane xplane
now we want 1 volume per body; currently one body has two
volumes.
separate body all
##turn off graphics to run faster
graphics off
imprints the profile of mating or contacting surfaces onto

Figure A-6: Geometry of Advanced Tutorial
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual197

APPENDIX A: Examples
each other.compress ids renumbers the entities starting at 1
imprint all
graphics on
set the element edge size for all the volumes and
Automatically select the meshing scheme for all volumes
vol all size 15
vol all scheme auto
After inspection, the 4 volumes that couldn’t be meshed, just
need help with setting the correct surface schemes.
surface 190 198 name ’submap_surfs’
surf 343 348 name ’map_surfs’
submap_surfs submap_surfs@A scheme submap
map_surfs map_surfs@A scheme map
Try auto scheme again to be sure.
vol all scheme auto
So one would think we are ready to mesh.
Lets save where we are.
export acis "advanced_temp.sat"
But first we need to check to make sure the collection can be
meshed.
We need to do a merge all first.
merge all
Note that no curves or vertices were merged seperatly so
merging was done successfully.
Redo the auto scheme because some of the entities were
deleted in the merge.
vol all scheme default
vol all scheme auto
Oops. (;-0)Given the other volumes meshing constraints, we
are left with a collection of volumes that need to be many to
many sweept(will be in future releases),
which we need to decompose.
While only one volume is reported, the other mirroring this
ones also need to be decomposed.
Here are the bodies that need further decomp.bod10 andbod108
Lets reset, to get rid of the merged entities, and read in
that file that we saved. Decomposing merged entities would
cause data base problems...
reset
Everything is named, and we don’t need to keep naming
set default names off
There will be lots of “Entity name” print statements that you
can ignore.
import acis "advanced_temp.sat"
Lets decompose those two bodies.
bod2 and bod2@A. the "{Id(“group”)}" is an APREPRO command
which is acceptable in CUBIT
Decompose and group the results into a group.
webcut bod2 plane sur27 group_results
This command names the group previous created
group {Id(“group”)} name “right_s”
webcut bod2@A plane sur31 group_results
group {Id(“group”)} name “left_s”
Now we still wouldn’t be able to mesh. sweep grouping would
show a problem. Rotating the mesh around with having
the many to one sweeps would cause mesh matching problems.
Esentially with the collection of volumes here we have a
many to many sweep. So really we need to get each volume
in the right_s and left_s groups to be 1 to 1 sweeps to get
the mesh to match correctly.
webcut right_s plane sur25 group_results
webcut left_s plane sur30 group_results
now chop the top part of both the right_s and left_s sides
This is further needed to get the group to be sweepable.
Doing this will generate a separte sweep path.
group "rounds" equals body all in group 4 5
webcut rounds plane sur32 noi nom group_results
So lets do a final imprint.
graphics off
imprint all
At this point you could merge all, set a size, do auto scheme
and group sweep volumes and find out that everything is
198 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX A: Examples
##meshable,with the exception of those surfaces we need to hand
set the chemes on.
export acis "advanced-decomp.sat"
reset
graphics on
Now the meshing part.
import acis "advanced-decomp.sat"
merge all
#The 4 surfaces that had names were merged into two surfaces.
group ’maps’ equals surface name ’map_surfs’
#oops that got both.
group ’submaps’ equals surface name ’submap_surfs’
group ’maps’ subtract submaps from maps
surface all in submaps scheme submap
surface all in maps scheme map
vol all size 15
vol all scheme auto
assign all sweepable surfaces to a group. This ensures that
the sweeping will be done in the proper order so the meshes
will match.
match intervals ensures that adjacent volumes have consistent
intervals.
group sweep volumes
match intervals vol all
First mesh the sweep groups.

mesh sweep_groups
Now mesh the volumes that are mappable or submappable.
mesh vol all
#Now fix up the mesh to make it nicer.
delete mesh
#improve the mesh by doing two things:
#1) change the intervals to remove skew
#2) use the boundary adjuster to improve it.
curve 455 int 10
#After changing intervals, you need to resolve the interval

Figure A-7: Mesh of Advanced Tutorial Problem
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual199

APPENDIX A: Examples

ple if
esh,

100 is
e shell
finite
g the
le are
lement

ple
#solution.
match int vol all
mesh surf 67 77 146 191
#straighten the skew on this surface first
adjust boundary surface 67
#now make the nodes immovable to adjust the mesh on the next
surface
#without this it might undo our last adjustment
surf 67 node position fixed
#now fix the skew on the next surface.
adjust boundary surf 77
#The other two surfaces are a little different.
#The optimal way to releive skew would be to do more
#decomposition.
#We don’t want
adjust boundary surf 191
mesh sweep_groups
mesh vol all
Now lets look at quality.
The main thing to look for are 1: No negative Jacobains
2: No skew near 1.0
quality volume all
Now take a look at the interior:
body 21 23 25 16 5 3 4 11 27 29 13 15 31 vis off
display
To show only exterior faces and not geometry do this:
(this generally gives better pictures)
graphics use facets on

▼ ExodusII File Specification

Element Block Definition Examples
Multiple Element Blocks

Multiple element blocks are often used when generating a finite element mesh. For exam
the finite element model consists of a block which has a thin shell encasing the volume m
the following block commands would be used:

Block 100 Volume 1
Block 100 Element Type Hex8
Block 200 Surface 1 To 6
Block 200 Element Type Shell4
Block 200 Attribute 0.01
Mesh Volume 1
Export Genesis ‘block.g’

This sequence of commands defines two element blocks (100 and 200). Element block
composed of 8-node hexahedral elements and element block 200 is composed of 4-nod
elements on the surface of the block. The “thickness” of the shell elements is 0.01. The
element code which reads the Genesis file (block.g) would refer to these blocks usin
element block IDs 100 and 200. Note that the second line and the fourth line of the examp
not required since both commands represent the default element type for the respective e
blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the exam
would be omitted and theMesh Volume 1 line would be changed to, for example,Mesh
Surface 1 To 6.
200 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER

r to
ock.

esult.

ing in
d
re if
Two-Dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases simila
FASTQ. The usermustfirst assign the appropriate surfaces in the model to an element bl
Then aQuad* type element may be specified for the element block. For example

Block 1 Surface 1 To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will r
In writing a two-dimensional Genesis database, CUBITignores all z-coordinate data.
Therefore, the user must ensure that the Element Block is assigned to a planar surface ly
a plane parallel to the x-y plane. Currently, theQuad* element types are the only supporte
two-dimensional elements. Two-dimensional shell elements will be added in the near futu
required.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual201

CHAPTER
202 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

the
the
Appendix B: Available Colors
All color commands in CUBIT require the specification of a color name; Table B-1 lists
colors available in CUBIT at this time. Table B-1 lists the color number (#), color name, and
red, green, and blue components corresponding to each color, for reference.
Table B-1: Available Colors

 # Color Name Red
Gree

n
Blue

0 black 0.000 0.000 0.000

1 grey 0.500 0.500 0.500

2 green 0.000 1.000 0.000

3 yellow 1.000 1.000 0.000

4 red 1.000 0.000 0.000

5 magenta 1.000 0.000 1.000

6 cyan 0.000 1.000 1.000

7 blue 0.000 0.000 1.000

8 white 1.000 1.000 1.000

9 orange 1.000 0.647 0.000

 10 brown 0.647 0.165 0.165

 11 gold 1.000 0.843 0.000

 12 lightblue 0.678 0.847 0.902

 13 lightgreen 0.000 0.800 0.000

 14 salmon 0.980 0.502 0.447

 15 coral 1.000 0.498 0.314

 16 pink 1.000 0.753 0.796

 17 purple 0.627 0.125 0.941

 18 paleturquoise 0.686 0.933 0.933
Document Version 4/18/00
 19 lightsalmon 1.000 0.627 0.478

 20 springgreen 0.000 1.000 0.498

 21 slateblue 0.416 0.353 0.804

 22 sienna 0.627 0.322 0.176

 23 seagreen 0.180 0.545 0.341

 24 deepskyblue 0.000 0.749 1.000

 25 khaki 0.941 0.902 0.549

 26 lightskyblue 0.529 0.808 0.980

 27 turquoise 0.251 0.878 0.816

 28 greenyellow 0.678 1.000 0.184

 29 powderblue 0.690 0.878 0.902

 30 mediumturquoise 0.282 0.820 0.800

 31 skyblue 0.529 0.808 0.922

 32 tomato 1.000 0.388 0.278

 33 lightcyan 0.878 1.000 1.000

 34 dodgerblue 0.118 0.565 1.000

 35 aquamarine 0.498 1.000 0.831

 36 lightgoldenrodyellow 0.980 0.980 0.824

 37 darkgreen 0.000 0.392 0.000

Table B-1: Available Colors

 # Color Name Red
Gree

n
Blue
CUBIT Version 4.0 Reference Manual203

APPENDIX B Available Colors
 38 lightcoral 0.941 0.502 0.502

 39 mediumslateblue 0.482 0.408 0.933

 40 lightseagreen 0.125 0.698 0.667

 41 goldenrod 0.855 0.647 0.125

 42 indianred 0.804 0.361 0.361

 43 mediumspringgreen 0.000 0.980 0.604

 44 darkturquoise 0.000 0.808 0.820

 45 yellowgreen 0.604 0.804 0.196

 46 chocolate 0.824 0.412 0.118

 47 steelblue 0.275 0.510 0.706

 48 burlywood 0.871 0.722 0.529

 49 hotpink 1.000 0.412 0.706

 50 saddlebrown 0.545 0.271 0.075

 51 violet 0.933 0.510 0.933

 52 tan 0.824 0.706 0.549

 53 mediumseagreen 0.235 0.702 0.44

 54 thistle 0.847 0.749 0.847

 55 palegoldenrod 0.933 0.910 0.667

 56 firebrick 0.698 0.133 0.133

 57 palegreen 0.596 0.984 0.596

 58 lightyellow 1.000 1.000 0.878

 59 darksalmon 0.914 0.588 0.478

Table B-1: Available Colors

 # Color Name Red
Gree

n
Blue
204 CUBIT Version 4.0 Reference Manual

7

3

 60 orangered 1.000 0.271 0.000

 61 palevioletred 0.859 0.439 0.576

 62 limegreen 0.196 0.804 0.196

 63 mediumblue 0.000 0.000 0.804

 64 blueviolet 0.541 0.169 0.886

 65 deeppink 1.000 0.078 0.576

 66 beige 0.961 0.961 0.863

 67 royalblue 0.255 0.412 0.882

 68 darkkhaki 0.741 0.718 0.420

 69 lawngreen 0.486 0.988 0.000

 70 lightgoldenrod 0.933 0.867 0.510

 71 plum 0.867 0.627 0.867

 72 sandybrown 0.957 0.643 0.376

 73 lightslateblue 0.518 0.439 1.000

 74 orchid 0.855 0.439 0.839

 75 cadetblue 0.373 0.620 0.627

 76 peru 0.804 0.522 0.247

 77 olivedrab 0.420 0.557 0.137

 78 mediumpurple 0.576 0.439 0.859

 79 maroon 0.690 0.188 0.376

 80 lightpink 1.000 0.714 0.757

 81 darkslateblue 0.282 0.239 0.545

 82 rosybrown 0.737 0.561 0.561

 83 mediumvioletred 0.780 0.082 0.522

 84 lightsteelblue 0.690 0.769 0.871

 85 mediumaquamarine 0.400 0.804 0.66

Table B-1: Available Colors

 # Color Name Red
Gree

n
Blue
Document Version 4/18/00

CHAPTER
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual205

CHAPTER
206 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

ment
y. In
ation
mail

E

l

to the
t be

rm.

been

ual is
Appendix C: CUBIT Licensing,
Distribution and Installation

The CUBIT code is available for use by personnel inside Sandia, any other govern
laboratory, or to personnel performing work under contract by a US government entit
addition, CUBIT can be licensed for non-commercial and research use. For more inform
on licensing of CUBIT, see the CUBIT web page (http://endo.sandia.gov/cubit) or send e
to cubit-dev@sandia.gov.

Note: CUBIT installations have use restrictions. THE CUBIT CODE CANNOT B
COPIED TO ANOTHER COMPUTER AND THE NUMBER OF USER SEATS ON
EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additiona
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and licensed
CUBIT project. Since the number of licenses for these modules is limited, CUBIT canno
copied and redistributed without notifying the CUBIT team.

CUBIT is distributed in statically linked executable form for each supported platfo
Supported platforms include the HP 9000 series running HP-UX1, Sun SPARCstations running
Solaris2, and the SGI running IRIX3. Additional platforms will be added as required; in
particular, a port to Windows NT is underway and should be ready shortly.

Instructions for obtaining the CUBIT code will be given after licensing arrangements have
completed.

In addition to the CUBIT executable, the suite of example problems described in this man
available upon request.

1. HP-UX is a registered trademark of Hewlett-Packard Company.

2. Sun, SunOS, and Solaris are registered trademarks of Sun Microsystems, Inc.

3. IRIX is a registered trademark of Silicon Graphics, Inc.
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual207

APPENDIX C CUBIT Licensing, Distribution and Installation
208 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX C CUBIT Licensing, Distribution and Installation
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual209

APPENDIX C CUBIT Licensing, Distribution and Installation
210 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

APPENDIX C CUBIT Licensing, Distribution and Installation
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual211

odusII
the

types
mple,
D-1.

ample
dusII
side
Appendix D: Element Numbering
▼ Introduction…213

▼ Node Numbering…213

▼ Side Numbering…213

▼ Introduction
This appendix describes the element node and side numbering conventions used in Ex
files written by CUBIT. This information is located here for convenience, but is identical to
information presented in [6].

▼ Node Numbering
The node numbering used for the basic elements is shown in Figure D-1. Specific element
of lower order just contain the number of nodes needed for those elements; for exa
QUAD4 or QUAD elements use just the first four nodes shown for quadrilaterals in Figure

▼ Side Numbering
Element sides are used to specify boundary conditions that act over a length or area, for ex
pressure- or flux-type boundary conditions. Each element side is represented in the Exo
format by an element number and the local side number for that element. The local
numbering for the basic elements is shown in Figure D-2.

Truss, Beam,

Shell (2D)

Quadrilateral,

Shell (3D)

Hexahedral

Figure D-1: Local Node Numbering for CUBIT Element Types

1 3 2

1 2

34

5

6

7

8
9

1 2

34

5 6

78

9

10

11

1213 14

1516
17

18

19

20

21
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual213

APPENDIX D Element Numbering
Quadrilateral,

Shell (3D)

Hexahedral

Figure D-2: Local Side Numbering for CUBIT Element Types

1 2

34

1

24

1 2

34

5 6

78

9

10

11

1213 14

1516
17

18

19

20

21
214 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

llows
by an
finite
Appendix E: Adaptive Meshing
▼ Introduction…215

▼ Introduction
CUBIT contains a sophisticated adaptive mesh generation capability for surfaces. This a
the generation of an unstructured quadrilateral surface mesh whose density is controlled
externally-defined sizing function. This capability has been used to demonstrate adaptive
element analysis for structural mechanics applications (ref).
Document Version 4/18/00 CUBIT Version 4.0 Reference Manual215

APPENDIX E Adaptive Meshing
216 CUBIT Version 4.0 Reference Manual Document Version 4/18/00

CHAPTER

of el-

n as the

integer
E

Element Blocks. Element Blocks (also referred to as simply, Blocks) are a logical grouping
ements all having the same basic geometry and number of nodes. 179

N

Nodeset. Nodesets are a logical grouping of nodes also accessed through a single ID know
Nodeset ID. 180

S

Sideset. Sidesets represent a grouping of element sides and are also referenced using an
Sideset ID. 180
Document Version 4/18/00 CUBIT Version 3.0 Reference Manual217

CHAPTER
218 CUBIT Version 3.0 Reference Manual Document Version 4/18/00

CHAPTER
Appendix F: Index

Symbols

$HOME/.cubit 4, 5, 21, 22
.cubit 4, 5, 21, 22

A

Angle
Perspective 42

Aprepro 193
At 42
Attribute

Block 181

B

-batch 4, 21
Block 192

Attribute 181
Curve 181
Element Type 181
Surface 181
Volume 181

Body
Copy 69
List 51
Move 70
Reflect 71
Restore 71
Rotate 70
Scale 70

Booleans 71
Intersect 71, 190
Subtract 72, 188, 189, 190
Unite 72

Boundary Condition 180
SideSet 180

Brick 63, 188, 190

C

Color
Document Version 4/18/00 CUBIT Version 3.0 Reference Manual219

CHAPTER
Table 203
Command Line

Echo 23
Copy 190

Body 69
Create

Brick 63
Cylinder 63, 64
Frustum 63, 64
Prism 63, 64
Pyramid 63, 64
Sphere 63, 65
Torus 63, 65

Cube with Hole 8, 188
CUBIT_OPT 5, 22
Cursor

Zoom 43
Curve 181

Block 181
List 51
NodeSet 182
Reverse Bias 122
SideSet 182

Cylinder 63, 64, 188, 190

D

Debug 52
-debug 5, 22, 53
Decomposition 73

E

Echo 23
Editing

Mesh 161
Element Block 179
Element Type 115

Block 181
Environment Variable

CUBIT_OPT 5, 22
Equipotential 164
Error 52
Example

Box Beam 190
220 CUBIT Version 3.0 Reference Manual Document Version 4/18/00

CHAPTER
Cube with Hole 8, 188
Octant of Sphere 190
Thunderbird 3D Shell 193

Execution Options
-batch 4, 21
-debug 5, 22, 53
-fastq 5, 22
-help 4, 21
-Include 5, 22
-information 5, 22, 53
-initfile 4, 5, 21, 22
-maxjournal 4, 21
-noinitfile 4, 21
-nojournal 5, 22, 24
-solidmodel 4, 21
-warning 5, 22, 53

Exit 23
Exodus 179
ExodusII 168

F

Face
List 51

False (toggle) 20
FASTQ 2, 66
-fastq 5, 22
Filename 20
Files

$HOME/.cubit 4, 5, 21, 22
Exodus 179
ExodusII 168
Genesis 179

From 42
Frustum 63, 64

G

Genesis 179
Geometry

Booleans 71
Decomposition 73
Manipulation 69
Merge 190, 193
Primitives 63
Document Version 4/18/00 CUBIT Version 3.0 Reference Manual221

CHAPTER
Graphics
Line Width 45
Perspective

Angle 42
Rotate 42
Zoom 43

Cursor 43
Reset 43
Screen 43

GUI 19

H

Hardcopy 45
-help 4, 21
Hex

List 51

I

-Include 5, 22
Information 52
-information 5, 22, 53
-initfile 4, 5, 21, 22
Initialization File 4, 21
Intersect 71, 190

J

Journal
Playback 23
Record 23

Journal Off 4, 5, 21, 22, 24
-journalfile

Execution Options
-journalfile 4, 21

L

Line Width 45
List 50

Body 51
Curve 51
Face 51
Hex 51
222 CUBIT Version 3.0 Reference Manual Document Version 4/18/00

CHAPTER
Nodes 51
Settings 53
Surface 51
Vertex 51
Volume 51

M

makefile 193
-maxjournal 4, 21
Merge 190, 193

All 80
Mesh

Editing 161
Messages

Debug 52
Error 52
Information 52
Warning 52

Model
attributes 3

Move
Body 70
NodeSet 167

N

No (toggle) 20
Node

List 51
Repositioning 167

NodeSet
Curve 182
Move 167, 192
Surface 182
Vertex 182
Volume 182

-noinitfile 4, 21
-nojournal 5, 22, 24

O

Octant of Sphere 190
Off (toggle) 20
On (toggle) 20
Document Version 4/18/00 CUBIT Version 3.0 Reference Manual223

CHAPTER
Output
PICT 45
PostScript 45

P

Parameter 20
Optional 21

Pave 188, 190
Perspective

Angle 42
PICT 45
Plaster

Volume Scheme 136
Playback 23
PostScript 45
Primitives

Brick 63
Cylinder 63, 64
Frustum 63, 64
Geometry 63
Prism 63, 64
Pyramid 63, 64
Sphere 63, 65
Torus 63, 65

Prism 63, 64
Project 190

Volume Scheme 143
Pyramid 63, 64

Q

Quit 23

R

Record 23
Stop 23

Reflect
Body 71

Repositioning
Node 167

Reset 23
Zoom 43

Restore
224 CUBIT Version 3.0 Reference Manual Document Version 4/18/00

CHAPTER
Body 71
Reverse Bias 122
Rotate 42, 190

Body 70

S

Scale
Body 70

Scheme
Plaster 136
Project 143
Triangle 152

Settings
List 53

SideSet 180
Curve 182
Surface 182

-solidmodel 4, 21
Sphere 63, 65, 190
String 20
Subtract 72, 188, 189, 190
Surface 181

Block 181
List 51
NodeSet 182
SideSet 182

T

Thunderbird 3D Shell 193
Title 183
Toggle 20
Torus 63, 65
Translate 188
Triangle 152
True (toggle) 20

U

Unite 72
Up 42
User interface 19
Document Version 4/18/00 CUBIT Version 3.0 Reference Manual225

CHAPTER
V

Version 23
Vertex

List 51
NodeSet 182

View
At 42
From 42
Up 42

Volume 181
Block 181
List 51
NodeSet 182
Scheme

Plaster 136
Project 143

W

Warning 52
-warning 5, 22, 53

Y

Yes (toggle) 20

Z

Zoom 43
Cursor 43
Reset 43
Screen 43
226 CUBIT Version 3.0 Reference Manual Document Version 4/18/00

April 18, 2000

MS-0847Distribution:
MS-0321 W. J. Camp, 9200
MS-0841 P. J. Hommert, 9100
9200, All managers (please route to
staff)
9100, All managers (please route to
staff)
MS-0865 J. L. Moya, 9735
MS-0624 C. A. Neugebauer, 2984
MS-0625 L. K. Grube, 2983
MS-0105 A. J. Webb, 2435
MS-9042 E. P. Chen, 8742
MS-0437 J. Jung, 9135
MS-0828 L. A. Schoof, 9121
MS-0828 J. R. Stewart, 9121
MS-0828 J. A. Schutt, 9121
MS-0828 L. M. Taylor, 9121
MS-0847 S. A. Mitchell, 9226
MS-0847 T. J. Tautges, 9226
MS-0847 D. R. White, 9226
MS-0847 P. Knupp, 9226
MS-0847 R. M. Garcia, 9226
MS-0847 D. J. Melander, 9226
MS-0847 L. Freitag, 9226
MS-0437 S. W. Attaway, 9117
MS-0443 C. M. Stone, 9117
MS-0443 G. D. Sjaardema, 9117
MS-0443 J. G. Arguello, 9117
MS-0834 J. B. Aidun, 9117
MS-0443 M. K. Neilsen, 9117
MS-0443 G. W. Wellman, 9117
MS-0443 J. Holland, 9117
MS-0443 K. Brown, 9117
MS-0443 S. W. Key, 9117
MS-0443 J. D. Gruda, 9117
MS-9042 A. M. Schauer, 8742
MS-0521 S. T. Montgomery, 1567
MS-0660 A. L. Ames, 9622
MS-0826 D. K. Gartling, 9111
MS-0826 M. A. Walker, 9111
MS-0826 R. C. Givler, 9111
MS-0826 P. R. Schunk, 9111
MS-0834 P. L. Hopkins, 9112
MS-0835 R. J. Cochran, 9113
MS-0835 R. R. Lober, 9113
MS-0835 S. E. Gianoulakis, 9113
MS-0557 T. W. Simmermacher, 9119
MS-1109 C. T. Vaughan, 9226
MS-1111 S. Plimpton, 9221
MS-1111 A. Salinger, 9221
MS-1111 S. Hutchinson, 9221
MS-1111 R. Schmidt, 9221
MS-1111 J. Shadid, 9221
MS-1111 D. Barnette, 9221
MS-0819 M. A. Christon, 9231
MS-0819 E. A. Boucheron, 9231
MS-0819 J. R. Weatherby, 9231
MS-0819 S. Petney, 9231
MS-0819 A. C. Robinson, 9231

MS-0820 A. B. Farnsworth, 9232
MS-1166 D. J. Riley, 9352
MS-1186 M. F. Pasik, 9542
MS-0847 CUBIT Report File

Dr. Steve Benzley & Research Assts.
Associate Dean,
General & Honors Education
350 MSRB
Brigham Young University
Provo, UT 84602

Steve Storm
Caterpillar Inc.
Bldg. AD 3335
600 W. Washington Street
East Peoria, Illinois 61630-3335

Dr. Rajit Gadh
347 Mech. Engr. Bldg
1513 University Ave
Madison, WI 53706

Ray Meyers
301 East 925 North
American Fork, UT 84003

Michael Stephenson
2005 West 1550 North
Provo UT, 84604-2212

	CUBIT Mesh Generation Environment Volume 1: Users Manual
	Cubit Development Team Membership
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1: Getting Started
	Introduction
	How to Use This Manual
	Features
	Geometry Creation, Modification and Healing
	Non-Manifold Topology
	Geometry Decomposition
	Mesh Generation
	Boundary Conditions
	Element Types
	Graphics Display Capabilities
	Command Line Interface
	Hardware Platforms

	Executing CUBIT
	Execution Command Syntax
	User Environment Settings
	Initialization File

	CUBIT Mailing Lists
	Problem Reports and Enhancement Requests

	Chapter 2: Tutorial
	Introduction
	Overview
	Step 1: Beginning Execution
	Step 2: Creating the Brick
	Step 3: Creating the Cylinder
	Step 4: Adjusting the Graphics Display
	Step 5: Forming the Hole
	Step 6: Setting Interval Sizes
	Step 7: Surface Meshing
	Step 8: Volume Meshing
	Step 9: Inspecting the Model
	Step 10: Defining Boundary Conditions
	Step 11: Exporting the Mesh
	Congratulations

	Chapter 3: Environment
	Introduction
	Command Syntax
	Executing CUBIT
	Execution Command Syntax
	Environment Variables
	Initialization File

	Session Control
	Command Recording and Playback
	Journal File Creation & Playback
	Automatic Journal File Creation

	Restart
	Entity Specification
	Types of Entity Range Input
	Precedence of “Except” and “In”
	Placement in CUBIT Commands

	Command Line Editing
	Graphics
	Updating the Display
	Graphics Modes
	Drawing and Highlighting Entities
	Mouse-Based View Navigation
	Selecting Entities with the Mouse
	Entity Selection
	Query-Selection
	Multiple Selected Entities
	Picked Group
	Substituting the Selection into Commands

	Mesh Slicing
	Entity Labels
	Colors
	Color Definitions
	Specifying Colors in Commands
	Assigning Colors

	Geometry and Mesh Entity Visibility
	Graphics Camera
	Changing Camera Attributes Using Rotate, Zoom Pan
	Changing Camera Attributes Directly

	Graphics Windows
	Window Size and Position
	Using Multiple Windows

	Hardcopy Output
	Miscellaneous Graphics Options

	Graphics Enhancements
	Entity Parsing

	Listing Information
	List Model Summary
	List Geometry
	List Mesh
	List Special Entities
	List CUBIT Environment
	Message Output Settings
	Graphical Display Information
	Memory Usage Information

	Obtaining Help

	Chapter 4: Geometry
	Introduction
	CUBIT Geometry Model Definitions
	Topology
	Non-Manifold Topology

	Automatic Detail Suppression
	Geometry Creation
	Geometric Primitives
	General Notes
	Brick
	Cylinder
	Prism
	Frustum
	Pyramid
	Sphere
	Torus

	Importing Geometry
	Importing ACIS Models
	Importing FASTQ Models
	Importing ExodusII Files

	Bottom-Up Geometry Creation
	Vertex
	Curve
	Surface
	Volume

	Geometry Transforms
	Align
	Copy
	Move
	Scale
	Rotate
	Reflect
	Restore

	Geometry Booleans
	Imprint
	Intersect
	Section
	Separate
	Subtract
	Unite

	Geometry Decomposition
	Web Cutting
	Webcut Using Planar or Cylindrical Surface
	Webcut with Arbitrary Surface
	Webcut Using Tool Body
	Webcut Options
	General Notes

	Split Periodic

	Virtual Geometry:
	Automatic Geometry Decomposition
	Geometry Merging
	Merging
	Examining Merged Entities
	Merge Tolerance
	Using Geometry Merging to Verify Geometry

	Geometry Groups
	Geometry Attributes
	Entity Names
	Persistent Attributes
	Attribute Behavior
	Attribute Types
	Attribute Commands
	Using CUBIT Attributes

	Exporting Geometry
	New Geometry Commands
	Model Import/Export
	Groups

	Chapter 5: Mesh Generation
	Introduction
	Element Types
	Mesh Generation Process

	Interval Assignment
	Interval Firmness
	Explicit Specification of Intervals
	Automatic Specification of Intervals
	Interval Matching
	Periodic Intervals
	Relative Intervals

	Meshing Schemes
	Bias, Dualbias
	Circle
	Copy
	Curvature
	Dice
	The Simplified Dicer Commands
	Additional Dicing Commands

	Equal
	HexToVoid
	HexTet
	Hole
	Mapping
	Mirror
	Pave
	Pentagon Primitive
	Plastering
	QTri
	Sphere
	Stretch
	Submap
	Sweep
	Many-to-Many, or Multisweeping

	TetMesh, TetINRIA, TetMSC
	Tetrahedron
	THex
	Transition
	Triangle
	Trimap
	TriMesh, TriAdvance, TriMSC
	Tripave
	Whisker Weaving
	Whisker Weaving Basic Commands
	Whisker Weaving Options

	Automatic Scheme Selection
	Notes: Surface Auto Scheme Selection
	Notes: Volume Auto Scheme Selection
	General Notes

	Mesh-Related Topics
	Grouping Sweepable Volumes
	FullHex versus NodeHex Representation
	Surface Vertex Types
	Preview Mesh

	Mesh Smoothing
	Smooth Scheme: Centroid Area Pull
	Smooth Scheme: Equipotential
	Smooth Scheme: Laplacian
	Smooth Scheme: Optimize Area
	Smooth Scheme: Optimize Condition Number
	Smooth Scheme: Optimize Jacobian
	Smooth Scheme: Optimize Untangle
	Smooth Scheme: Randomize
	Smooth Scheme: Winslow

	Mesh Deletion
	Node and NodeSet Repositioning
	Mesh Importing and Duplicating
	Importing mesh from an external file
	Duplicating mesh

	Mesh Quality Assessment
	Metrics for Triangular Elements
	Metrics for Quadrilaterals
	Metrics for Tetrahedral Elements
	Metrics for Hexahedral Elements
	Details on Robinson Metrics for Quadrilaterals
	Command Syntax
	Example Output
	Controlling Mesh Quality

	Mesh Validity

	Chapter 6: Finite Element Model Definition and Output
	Introduction
	Finite Element Model Definition
	Element Blocks
	Nodesets
	Sidesets
	Element Types

	Element Block Specification
	Nodesets and Sidesets
	Nodeset Associativity Data

	ExodusII Model Title
	Transforming Mesh Coordinates
	Exporting the Finite Element Model
	References

	Appendix A: Examples
	Introduction
	General Comments
	Simple Internal Geometry Generation
	Octant of Sphere
	Box Beam
	Thunderbird 3D Shell
	Advanced Tutorial
	ExodusII File Specification
	Element Block Definition Examples
	Multiple Element Blocks

	Appendix B: Available Colors
	Appendix C: CUBIT Licensing, Distribution and Installation
	Appendix D: Element Numbering
	Introduction
	Node Numbering
	Side Numbering

	Appendix E: Adaptive Meshing
	Introduction

	Appendix F: Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

